MATH6380B - Advanced Topics in Derivative Pricing Models
 Homework One

Instructor: Prof. Y.K. Kwok

1. Consider the function

$$
f(S, \tau)=\left(\frac{S}{B}\right)^{\lambda} c_{E}\left(\frac{B^{2}}{S}, \tau\right)
$$

where $c_{E}(S, \tau)$ is the price of a vanilla European call option, λ is a constant parameter. Show that $f(S, \tau)$ satisfies the Black-Scholes equation

$$
\frac{\partial f}{\partial \tau}=\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}+r S \frac{\partial f}{\partial S}-r f
$$

when λ is chosen to be $-\frac{2 r}{\sigma^{2}}+1$.
Hint: Substitution of $f(S, \tau)$ into the Black-Scholes equation gives

$$
\begin{aligned}
& \frac{\partial f}{\partial \tau}-\left[\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}+r S \frac{\partial f}{\partial S}-r f\right] \\
& =\left(\frac{S}{B}\right)^{\lambda}\left[\frac{\partial c_{E}}{\partial \tau}-\frac{\sigma^{2}}{2} \xi^{2} \frac{\partial^{2} c_{E}}{\partial \xi^{2}}\right. \\
& \left.\quad+(\lambda-1) \sigma^{2} \xi \frac{\partial c_{E}}{\partial \xi}-\lambda(\lambda-1) \frac{\sigma^{2}}{2} c_{E}-r \lambda c_{E}+r \xi \frac{\partial c_{E}}{\partial \xi}+r c_{E}\right],
\end{aligned}
$$

where $c_{E}=c_{E}(\xi, \tau), \xi=\frac{B^{2}}{S}$.
2. Let the price process S_{t} be governed by

$$
\frac{d S_{t}}{S_{t}}=r d t+\sigma d W_{t}^{Q}
$$

where W_{t}^{Q} is a Brownian motion under the equivalent martingale measure Q. We write the arbitrage-free time- t value of a " g-claim" as

$$
\pi^{g}(t)=e^{-r(T-t)} E_{t}^{Q}\left[g\left(S_{T}\right)\right]=e^{-r(T-t)} f\left(S_{t}, t\right) .
$$

Let $p=1-\frac{2 r}{\sigma^{2}}$ and $H>0$ be a constant. We define a new function \hat{g} by

$$
\hat{g}(x)=\left(\frac{x}{H}\right)^{p} g\left(\frac{H^{2}}{x}\right) .
$$

We call \hat{g} to be g 's reflected claim. Show that the arbitrage-free time- t value of this \hat{g}-claim is given by

$$
\pi^{\hat{g}}(t)=e^{-r(T-t)}\left(\frac{S_{t}}{H}\right)^{p} f\left(\frac{H^{2}}{S_{t}}, t\right)
$$

Use the above result to deduce the price of an up-and-out put option with upstream barrier H and strike price X. Distinguish the two cases: (i) $H>X$, and (ii) $H \leq X$.

Hint: Define the process

$$
Z_{t}=\left(\frac{S_{t}}{H}\right)^{p}
$$

so that $d Z_{t}=p \sigma Z_{t} d W_{t}^{Q}$. The Radon-Nikodym derivative

$$
\frac{d Q^{Z}}{d Q}=\frac{Z(T)}{Z(0)}
$$

defines the probability $Q^{Z} \sim Q$. Show that

$$
\pi^{\hat{g}}(t)=e^{-r(T-t)}\left(\frac{S_{t}}{H}\right)^{p} E_{t}^{Q^{Z}}\left[g\left(\frac{H^{2}}{S_{T}}\right)\right] .
$$

Girsanov's Theorem tells us that

$$
d W_{t}^{Q^{Z}}=d W_{t}^{Q}-p \sigma d t .
$$

Hence, $W_{t}^{Q^{Z}}$ as defined above is a Q^{Z}-Brownian motion. Setting $Y_{t}=\frac{H^{2}}{S_{t}}$, show that

$$
d Y_{t}=r Y_{t} d t+\sigma Y_{t}\left(-d W_{t}^{Q^{Z}}\right)
$$

That is, the law of Y under Q^{Z} is the same as the law of S under Q.
3. By applying the following transformation on the dependent variable c in the Black-Scholes equation

$$
c=e^{\alpha y+\beta \tau} w
$$

where $\alpha=\frac{1}{2}-\frac{r}{\sigma^{2}}, \beta=-\frac{\alpha^{2} \sigma^{2}}{2}-r$, show that the convective diffusion equation

$$
\frac{\partial c}{\partial \tau}=\frac{\sigma^{2}}{2} \frac{\partial^{2} c}{\partial y^{2}}+\left(r-\frac{\sigma^{2}}{2}\right) \frac{\partial c}{\partial y}-r c
$$

is reduced to the prototype diffusion equation

$$
\frac{\partial w}{\partial \tau}=\frac{\sigma^{2}}{2} \frac{\partial^{2} w}{\partial y^{2}}
$$

while the auxiliary conditions are transformed to become

$$
w(0, \tau)=e^{-\beta \tau} R(\tau) \text { and } w(y, 0)=\max \left(e^{\alpha y}\left(e^{y}-X\right), 0\right)
$$

Consider the following diffusion equation defined in a semi-infinite domain

$$
\frac{\partial v}{\partial t}=a^{2} \frac{\partial^{2} v}{\partial x^{2}}, \quad x>0 \text { and } t>0, \quad a \text { is a positive constant }
$$

with initial condition: $v(x, 0)=f(x)$ and boundary condition: $v(0, t)=g(t)$, the solution to the diffusion equation is given by

$$
\begin{aligned}
v(x, t)= & \frac{1}{2 a \sqrt{\pi t}} \int_{0}^{\infty} f(\xi)\left[e^{-x-\xi)^{2} / 4 a^{2} t}-e^{-(x+\xi)^{2} / 4 a^{2} t}\right] d \xi \\
& +\frac{x}{2 a \sqrt{\pi}} \int_{0}^{t} \frac{e^{-x^{2} / 4 a^{2} \omega}}{\omega^{3 / 2}} g(t-\omega) d \omega .
\end{aligned}
$$

Using the above form of solution, show that the price of the European down-and-out call option is given by

$$
\begin{aligned}
c(y, \tau)= & e^{\alpha y+\beta \tau}\left\{\frac{1}{\sqrt{2 \pi \tau}} \int_{0}^{\infty} \max \left(e^{-\alpha \xi}\left(e^{\xi}-X\right), 0\right)\right. \\
& {\left[e^{-(y-\xi)^{2} / 2 \sigma^{2} \tau}-e^{-(y+\xi)^{2} / 2 \sigma^{2} \tau}\right] d \xi } \\
& \left.+\frac{y}{\sqrt{2 \pi} \sigma} \int_{0}^{\tau} \frac{e^{-\beta(\tau-\omega)} e^{-y^{2} / 2 \sigma^{2} \omega}}{\omega^{3 / 2}} R(\tau-\omega) d \omega\right\} .
\end{aligned}
$$

Assuming $B<X$, show that the price of the European down-and-out call option is given by

$$
\begin{aligned}
c(S, \tau)= & c_{E}(S, \tau)-\left(\frac{B}{S}\right)^{\delta-1} c_{E}\left(\frac{B^{2}}{S}, \tau\right) \\
& +\int_{0}^{\tau} e^{-r \omega} \frac{\ln \frac{S}{B}}{\sqrt{2 \pi} \sigma} \frac{\exp \left(\frac{-\left[\ln \frac{S}{B}+\left(r-\frac{\sigma^{2}}{2}\right) \omega\right]^{2}}{2 \sigma^{2} w}\right)}{\omega^{3 / 2}} R(\tau-\omega) d \omega
\end{aligned}
$$

The last term represents the additional option premium due to the rebate payment.
4. Consider a European down-and-out partial barrier call option where the barrier provision is activated only between option's starting date (time 0) and t_{1}. Here, t_{1} is some time earlier than the expiration date T, where $0<t_{1}<T$. Let B and X denote the down-barrier and strike, respectively, where $B<X$. Let the dynamics of S_{t} be governed by

$$
\frac{d S_{t}}{S_{t}}=r d t+\sigma d Z_{t}
$$

under the risk neutral measure Q. Assuming $S_{0}>B$, show that the down-and-out call price is given by

$$
\begin{aligned}
\text { call price }= & e^{-r T} E_{Q}\left[\left(S_{T}-X\right) \mathbf{1}_{\left\{S_{T}>X\right\}} \mathbf{1}_{\left\{m_{0}^{t_{1}}>B\right\}}\right] \\
= & S_{0}\left[N\left(d_{1}, e_{1} ; \sqrt{\frac{t_{1}}{T}}\right)-\left(\frac{B}{S}\right)^{\delta+1} N\left(d_{1}^{\prime}, e_{1}^{\prime} ; \sqrt{\frac{t_{1}}{T}}\right)\right] \\
& -e^{-r T} X\left[N\left(d_{2}, e_{2} ; \sqrt{\frac{t_{1}}{T}}\right)-\left(\frac{B}{S}\right)^{\delta-1} N\left(d_{2}^{\prime}, e_{2}^{\prime} ; \sqrt{\frac{t_{1}}{T}}\right)\right]
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
d_{1} & =\frac{\ln \frac{S_{0}}{X}+\left(r+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}, & d_{2}=d_{1}-\sigma \sqrt{T}, \\
d_{1}^{\prime} & =d_{1}+\frac{2 \ln \frac{B}{S_{0}}}{\sigma \sqrt{T}}, & d_{2}^{\prime}=d_{1}^{\prime}-\sigma \sqrt{T}, \\
e_{1} & =\frac{\ln \frac{S_{0}}{B}+\left(r+\frac{\sigma^{2}}{2}\right) t_{1}}{\sigma \sqrt{t_{1}}}, & e_{2}=e_{1}-\sigma \sqrt{t_{1}}, \\
e_{1}^{\prime} & =e_{1}+\frac{2 \ln \frac{B}{S_{0}}}{\sigma \sqrt{t_{1}}}, & e_{2}^{\prime}=e_{1}^{\prime}-\sigma \sqrt{t_{1}}, \\
\delta & =\frac{2 r}{\sigma^{2}}
\end{array}
$$

Find the corresponding price function when t_{1} is set equal to T.
5. The density function ϕ_{n} of the n-variate unit variance Brownian motion with constant drifts and one-sided barrier satisfies the following forward Fokker-Planck equation with a semi-infinite domain in the first independent variable x_{1} and infinite domain in the remaining independent variables

$$
\frac{\partial \phi_{n}}{\partial t}=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{i j} \frac{\partial^{2} \phi_{n}}{\partial x_{i} \partial x_{j}}-\sum_{j=1}^{n} \mu_{j} \frac{\partial \phi_{n}}{\partial x_{j}}, \quad t>0, b_{1}<x_{1}<\infty,-\infty<x_{j}<\infty, j=2, \cdots, n .
$$

Show that the following linear transformation of the independent variables

$$
z_{j}= \begin{cases}x_{1} & \text { if } j=1 \\ \frac{x_{j}-\rho_{1 j} x_{1}}{\sqrt{1-\rho_{1 j}^{2}}} & \text { if } j=2,3, \ldots, n\end{cases}
$$

leads to the splitting of ϕ_{n} in the following sense:

$$
\phi_{n}\left(z_{1}, z_{2}, \ldots, z_{n}, t\right)=\phi_{1}\left(z_{1}, t\right) \phi_{n-1}\left(z_{2}, \ldots, z_{n}, t\right)
$$

The reduced density functions $\phi_{1}\left(z_{1}, t\right)$ and $\phi_{n-1}\left(z_{2}, \ldots, z_{n}, t\right)$ satisfy, respectively, the following equations

$$
\begin{aligned}
& \frac{\partial \phi_{1}}{\partial t}=\frac{1}{2} \frac{\partial^{2} \phi_{1}}{\partial z_{1}^{2}}-\mu_{1} \frac{\partial \phi_{1}}{\partial z_{1}}, \quad t>0, b_{1}<z_{1}<\infty \\
& \frac{\partial \phi_{n-1}}{\partial t}=\frac{1}{2} \sum_{i=2}^{n} \sum_{j=2}^{n} \tilde{\rho}_{i j} \frac{\partial^{2} \phi_{n-1}}{\partial z_{i} \partial z_{j}}-\sum_{j=2}^{n} \tilde{\mu}_{j} \frac{\partial \phi_{n-1}}{\partial z_{j}}, \quad t>0,-\infty<z_{j}<\infty, j=2, \ldots, n
\end{aligned}
$$

where

$$
\tilde{\rho}_{i j}=\frac{\rho_{i j}-\rho_{1 i} \rho_{1 j}}{\sqrt{\left(1-\rho_{1 i}^{2}\left(1-\rho_{1 j}^{2}\right)\right.}} \quad \text { and } \quad \tilde{\mu}_{j}=\frac{\mu_{j}-\rho_{1 j} \mu_{1}}{\sqrt{1-\rho_{1 j}^{2}}}, \quad i, j=2,3, \ldots, n
$$

Note that both $\phi_{1}\left(z_{1}, t\right)$ and $\phi_{n}\left(z_{1}, \ldots, z_{n}, t\right)$ share the same homogeneous Dirichlet condition at $z_{1}=b_{1}$.

Hint Consider the n-dimensional standard Brownian motion ($\left.\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{n}\end{array}\right)$ with correlation matrix R whose entries are $\rho_{i j}, i, j=1,2, \ldots, n$. Suppose we define

$$
Z_{j}= \begin{cases}X_{1} & \text { for } j=1 \\ \frac{X_{j}-\rho_{1 j} X_{1}}{\sqrt{1-\rho_{1 j}^{2}}} & \text { for } j=2,3, \ldots, n\end{cases}
$$

then the joint process $\left(\begin{array}{llll}Z_{1} & Z_{2} & \cdots & Z_{n}\end{array}\right)$ is also a n-dimensional standard Brownian motion.
6. Let the exit time density $q^{+}\left(t ; x_{0}, t_{0}\right)$ to the upper barrier ℓ have dependence on the initial state $X\left(t_{0}\right)=x_{0}, 0<x_{0}<\ell$. We write $\tau=t-t_{0}$ so that $q^{+}\left(t ; x_{0}, t_{0}\right)$ is visualized as $q^{+}\left(x_{0}, \tau\right)$. Show that the partial differential equation formulation is given by

$$
\frac{\partial q^{+}}{\partial \tau}=\mu \frac{\partial q^{+}}{\partial x_{0}}+\frac{\sigma^{2}}{2} \frac{\partial^{2} q^{+}}{\partial x_{0}^{2}}, \quad 0<x_{0}<\ell, \quad \tau>0
$$

with auxiliary conditions:

$$
q^{+}(0, \tau)=0, \quad q^{+}(\ell, \tau)=\delta(\tau) \quad \text { and } \quad q^{+}\left(x_{0}, 0\right)=\delta\left(\ell-x_{0}\right)
$$

By solving the above partial differential equation, show that

$$
q^{+}\left(t ; x_{0}, t_{0}\right)=e^{\frac{\mu}{\sigma^{2}}\left(\ell-x_{0}\right)} \frac{\sigma^{2}}{\ell^{2}} \sum_{k=1}^{\infty} e^{-\lambda_{k}\left(t-t_{0}\right)} k \pi \sin \frac{k \pi\left(\ell-x_{0}\right)}{\ell}
$$

where

$$
\lambda_{k}=\frac{1}{2}\left(\frac{\mu^{2}}{\sigma^{2}}+\frac{k^{2} \pi^{2} \sigma^{2}}{\ell^{2}}\right), \quad k=1,2, \ldots
$$

7. Suppose the dynamics of the logarithm of the stock price S_{t} is governed by

$$
d \ln S_{t}=\left(r-\frac{\sigma^{2}}{2}\right) d t+\sigma d W_{t}
$$

the density function of $\ln S_{T}$ conditional on $\ln S_{0}$ at time 0 is given by

$$
f\left(S_{T} ; S_{0}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2} T}} \exp \left(-\frac{\left(\ln \frac{S_{T}}{S_{0}}-\lambda T\right)^{2}}{2 \sigma^{2} T}\right), \quad \lambda=r-\frac{\sigma^{2}}{2}
$$

(a) Let τ_{L} denote the first passage time of the stock price to the lower barrier L, where $L<S_{0}$. Using the reflection principle, show that

$$
f\left(S_{T} ; S_{0} \mid \tau_{L}<T\right)=f\left(S_{T} ; \frac{L^{2}}{S_{0}}\right)\left(\frac{L}{S_{0}}\right)^{2 \lambda / \sigma^{2}}
$$

(b) Similarly, let τ_{U} denote the first passage time of the stock price to the upper barrier U, where $S_{0}<U$. Show that

$$
f\left(S_{T} ; S_{0} \mid \tau_{U}<T\right)=f\left(S_{T} ; \frac{U^{2}}{S_{0}}\right)\left(\frac{U}{S_{0}}\right)^{2 \lambda / \sigma^{2}}
$$

(c) Let $\tau_{U / L}\left(\tau_{L / U}\right)$ be the first time that the stock price process hits the upper barrier U (lower barrier L) after hitting the lower barrier L (upper barrier U). That is,

$$
\begin{aligned}
\tau_{U / L} & =\inf \left\{t \mid S(t)=U, t>\tau_{L}\right\} \\
\tau_{L / U} & =\inf \left\{t \mid S(t)=L, t>\tau_{U}\right\}
\end{aligned}
$$

Show that

$$
\begin{aligned}
& f_{U / L}\left(S_{T} ; S_{0}\right)=f\left(S_{T} ; S_{0}\left(\frac{U}{L}\right)^{2}\right)\left(\frac{U}{L}\right)^{2 \lambda / \sigma^{2}} \\
& f_{L / U}\left(S_{T} ; S_{0}\right)=f\left(S_{T} ; S_{0}\left(\frac{L}{U}\right)^{2}\right)\left(\frac{L}{U}\right)^{2 \lambda / \sigma^{2}}
\end{aligned}
$$

Double reflection of a sample stock price path
(d) Use the density function $f_{L / U}\left(S_{T} ; S_{0}\right)$ to find the price formula of the call option with strike price X, where $L<X<U$, and subject to knock-out upon sequential breaching of up-barrier U first and down-barrier L afterwards.
(e) Lastly, deduce that the density function of $\ln S_{T}$, conditional on the stock price hitting neither the lower barrier L nor the upper barrier U before time T, is given by

$$
\begin{aligned}
& f\left(S_{T} ; S_{0} \mid \min \left(\tau_{L}, \tau_{U}\right)>T\right) \\
= & \sum_{n=-\infty}^{\infty} f\left(S_{T} ; S_{0}\left(\frac{U}{L}\right)^{2 n}\right)\left(\frac{U}{L}\right)^{2 n \lambda / \sigma^{2}}-f\left(S_{T} ; \frac{U^{2}}{S_{0}}\left(\frac{U}{L}\right)^{2 n}\right)\left[\left(\frac{U}{S_{0}}\right)\left(\frac{U}{L}\right)^{n}\right]^{2 \lambda / \sigma^{2}} .
\end{aligned}
$$

8. Consider the Black-Scholes equation with time-dependent model parameters for a standard European option

$$
\frac{\partial P(S, t)}{\partial t}+\frac{1}{2} \sigma(t)^{2} S^{2} \frac{\partial^{2} P(S, t)}{\partial S^{2}}+[r(t)-d(t)] S \frac{\partial P(S, t)}{\partial S}-r(t) P(S, t)=0,
$$

where P is the option value, S is the underlying asset price, t is the calendar time, σ is the volatility, r is the risk-free interest rate and d is the dividend yield. Introducing the new variable $x=\ln (S / B)$, where B is the value of the fixed barrier in a barrier option, the above pricing equation is simplified to

$$
\begin{equation*}
\frac{\partial P(x, t)}{\partial t}+\frac{1}{2} \sigma(t)^{2} \frac{\partial^{2} P(x, t)}{\partial x^{2}}+\left[r(t)-d(t)-\frac{1}{2} \sigma(t)^{2}\right] \frac{\partial P(x, t)}{\partial x}-r(t) P(x, t)=0 . \tag{1}
\end{equation*}
$$

(a) Explain why the solution $P(x, t)$ can be expressed as

$$
P(x, t)=\exp \left(c_{3}(t)\right) \exp \left(c_{1}(t) \frac{\partial}{\partial x}\right) \exp \left(c_{2}(t) \frac{\partial^{2}}{\partial x^{2}}\right) P(x, 0),
$$

where

$$
\begin{aligned}
& c_{1}(t)=\int_{0}^{t}\left[r\left(t^{\prime}\right)-d\left(t^{\prime}\right)-\frac{\sigma\left(t^{\prime}\right)^{2}}{2}\right] d t^{\prime} \\
& c_{2}(t)=\int_{0}^{t} \frac{\sigma\left(t^{\prime}\right)^{2}}{2} d t^{\prime} \\
& c_{3}(t)=-\int_{0}^{t} r\left(t^{\prime}\right) d t^{\prime} .
\end{aligned}
$$

(b) Making use of the well known relations

$$
\begin{aligned}
& \exp \left(\eta \frac{\partial}{\partial x}\right) f(x)=f(x+\eta) \\
& \exp \left(\eta \frac{\partial^{2}}{\partial x^{2}}\right) f(x)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{4 \pi \eta}} \exp \left[-\frac{(x-y)^{2}}{4 \eta}\right] f(y) d y
\end{aligned}
$$

for some parameter η, we can easily show that $P(x, t)$ can be expressed in the form

$$
P(x, t)=\int_{-\infty}^{\infty} G\left(x, t ; x^{\prime}, 0\right) P\left(x^{\prime}, 0\right) d x^{\prime}
$$

where

$$
G\left(x, t ; x^{\prime}, 0\right)=\frac{1}{\sqrt{4 \pi c_{2}(t)}} \exp \left(-\frac{\left[x-x^{\prime}+c_{1}(t)\right]^{2}}{4 c_{2}(t)}+c_{3}(t)\right)
$$

is the Green function of the pricing equation in eq. (1).
(c) By the method of images, we can also incorporate an absorbing time dependent barrier along the x-axis, and the barrier $S^{*}(t)$ has time dependence of the form

$$
x^{*}(t)=\ln \left(S^{*}(t) / B\right)=-c_{1}(t)-\beta c_{2}(t),
$$

where β is an adjustable parameter controlling the movement of the barrier. Show that the price of an up-and-out call option is then given by

$$
\begin{equation*}
P(x, t)=\int_{-\infty}^{0}\left\{G\left(x, t ; x^{\prime}, 0\right)-G\left(x, t ;-x^{\prime}, 0\right) \exp \left(-\beta x^{\prime}\right)\right\} P\left(x^{\prime}, 0\right) d x^{\prime} \tag{2}
\end{equation*}
$$

(d) Given the final payoff condition: $P(x, 0)=\max (S-K, 0)$, where K is the strike price, perform the integration in eq. (2) to obtain the price function:

$$
\begin{aligned}
P(x, t)= & \exp \left(c_{3}(t)+c_{2}(t)+c_{1}(t)+x\right) B \\
& {\left[N\left(-\frac{x+c_{1}(t)+2 c_{2}(t)}{\sqrt{2 c_{2}(t)}}\right)-N\left(-\frac{x+c_{1}(t)+2 c_{2}(t)-\ln (K / B)}{\sqrt{2 c_{2}(t)}}\right)\right] } \\
& -K \exp \left(c_{3}(t)\right)\left[N\left(-\frac{x+c_{1}(t)}{\sqrt{2 c_{2}(t)}}\right)-N\left(-\frac{x+c_{1}(t)-\ln (K / B)}{\sqrt{2 c_{2}(t)}}\right)\right] \\
& -\exp \left(c_{3}(t)+(\beta-1)\left[x+c_{1}(t)\right]+(\beta-1)^{2} c_{2}(t)\right) B \\
& {\left[N\left(\frac{x+c_{1}(t)+2(\beta-1) c_{2}(t)}{\sqrt{2 c_{2}(t)}}\right)-N\left(\frac{x+c_{1}(t)+2(\beta-1) c_{2}(t)+\ln (K / B)}{\sqrt{2 c_{2}(t)}}\right)\right] } \\
& +K \exp \left(c_{3}(t)+\beta\left[x+c_{1}(t)\right]+\beta^{2} c_{2}(t)\right) \\
& {\left[N\left(\frac{x+c_{1}(t)+2 \beta c_{2}(t)}{\sqrt{2 c_{2}(t)}}\right)-N\left(\frac{x+c_{1}(t)+2 \beta c_{2}(t)-\ln (K / B)}{\sqrt{2 c_{2}(t)}}\right)\right] . }
\end{aligned}
$$

(e) To simulate a fixed barrier, we shall choose an optimal value of the adjustable parameter β in such a way that the integral

$$
\int_{0}^{t^{*}}\left[x^{*}(t)\right]^{2} d t
$$

is minimized. In other words, we try to minimize the deviation from the fixed barrier by varying the parameter β. Here, t^{*} denotes the time at which the option price is evaluated. Show that the optimal value of β is given by

$$
\beta_{o p t}=-\frac{-\int_{0}^{t^{*}} c_{1}(t) c_{2}(t) d t}{\int_{0}^{t^{*}}\left[c_{2}(t)\right]^{2} d t}
$$

9. Let $p_{\tau(t)}$ be the density function of the stopping time

$$
\tau=\inf \left\{t \geq 0: W_{t} \geq g(t)\right\}
$$

where $g(t)$ is a continuous boundary with $g(0)>0$. We define

$$
\phi(x, \Delta)=\frac{\exp \left(-\frac{x^{2}}{2 \Delta}\right)}{\sqrt{2 \pi \Delta}}
$$

Show that

$$
P\left[\tau<t, W_{t}>y\right]=\int_{y}^{\infty} \int_{0}^{t} p_{\tau(u)} \phi(x-g(u), t-u) d u d x
$$

Suppose g is a linear boundary on the time interval $\left[t_{i}, t_{i+1}\right]$, show that

$$
\begin{aligned}
& P\left[W_{s}<g(x), t_{i} \leq s \leq t_{i+1} \mid W_{t_{i}}=x_{i}, W_{t_{i+1}}=x_{i+1}\right] \\
= & \mathbf{1}_{\left\{g\left(t_{i}\right)>x_{i}, g\left(t_{i+1}\right)>x_{i+1}\right\}}\left[1-\exp \left(-\frac{2\left[g\left(t_{i}\right)-x_{i}\right]\left[g\left(t_{i+1}\right)-x_{i+1}\right]}{t_{i+1}-t_{i}}\right)\right] .
\end{aligned}
$$

Next, we consider the approximation of the following probability:

$$
P(a, b)=P\left[a(t)<W_{t}<b(t), 0 \leq t \leq T\right]
$$

where $T>0$ is fixed, the functions $a(t)$ and $b(t)$ are continuous deterministic functions and satisfy $a(t)<b(t), 0 \leq t \leq T$, with $a(0)<0<b(0)$. Suppose we discretize the time interval $[0, T]$ by time points

$$
t_{0}=0<t_{1}<t_{2}<\ldots<t_{n-1}<t_{n}=T
$$

We write $\Delta t_{i}=t_{i}-t_{i-1}, \beta_{i}=b\left(t_{i}\right), \alpha_{i}=a\left(t_{i}\right)$ and $d_{i}=\beta_{i}-\alpha_{i}$. Suppose we approximate $a(t)$ and $b(t)$ by piecewise linear functions on $[0, T]$ with common nodes $\left\{t_{i}\right\}_{i=1}^{n}$, show that $P(a, b)$ can be approximated by

$$
P(a, b) \approx E\left[g\left(W\left(t_{1}\right), W\left(t_{2}\right), \ldots, W\left(t_{n}\right)\right)\right]
$$

where

$$
g(\boldsymbol{x})=\prod_{i=1}^{n} \mathbf{1}_{\alpha_{i}<x_{i}<\beta_{i}}\left[1-\sum_{j=1}^{\infty} q(i, j)\right]
$$

$$
\begin{aligned}
& \boldsymbol{x}=\left(\begin{array}{llll}
x_{1} & x_{2} \quad \ldots \quad x_{n}
\end{array}\right)^{T}, \Delta x_{i}=x_{i}-x_{i-1}, x_{0}=0, \text { and } \\
& q(i, j)= \exp \left(-\frac{2}{\Delta t_{i}}\left[j d_{i-1}+\left(\alpha_{i-1}-x_{i-1}\right)\right]\left[j d_{i}+\left(\alpha_{i}-x_{i}\right)\right]\right) \\
&-\exp \left(-\frac{2 j}{\Delta t_{i}}\left[j d_{i-1} d_{i}+d_{i-1}\left(\alpha_{i}-x_{i}\right)-d_{i}\left(\alpha_{i-1}-x_{i-1}\right)\right]\right) \\
&+\exp \left(-\frac{2}{\Delta t_{i}}\left[j d_{i-1}-\left(\beta_{i-1}-x_{i-1}\right)\right]\left[j d_{i}-\left(\beta_{i}-x_{i}\right)\right]\right) \\
&-\exp \left(-\frac{2 j}{\Delta t_{i}}\left[j d_{i-1} d_{i}-d_{i-1}\left(\beta_{i}-x_{i}\right)+d_{i}\left(\beta_{i-1}-x_{i-1}\right)\right]\right) .
\end{aligned}
$$

10. We consider a financial market that is complete, trading can take place continuously without frictions, etc. and there exists a unique risk neutral measure Q under which all discounted security prices in the market are Q-martingales. Under the risk neutral measure Q, the riskless interest rate r_{t} is assumed to follow the following extended Vasicek process

$$
d r_{t}=[\phi(t)-\alpha r] d t+\sigma_{r} d Z_{r}
$$

where σ_{r} is the constant volatility of the interest rate, $\phi(t)$ and α are parameters in the mean reversion process. Let $B(r, t ; T)$ denote the price of default free discount bond and the bond price volatility $\sigma_{B}(t, T)$ is then given by

$$
\sigma_{B}(t, T)=\frac{\sigma_{r}}{\alpha}\left[1-e^{-\alpha(T-t)}\right] .
$$

Under the risk neutral measure Q, the firm value process A_{t} is assumed to follow the Geometric Brownian motion

$$
\frac{d A_{t}}{A_{t}}=r_{t} d t+\sigma_{A} d Z_{A}
$$

where σ_{A} is the constant volatility of the firm value process. Further, we assume that the Brownian motions Z_{r} and Z_{A} are correlated such that $d Z_{r} d Z_{A}=\rho d t$, where ρ is the constant correlation coefficient.

We assume a simple capital structure of the firm as in the Merton structural debt model, where the firm liabilities consist only a single fixed debt with par value F and maturity date T. Bondholders are protected by a safety covenant whereby the bondholders can force a reorganization when the firm value A_{t} falls to some threshold level $\nu(t)$. The threshold level is exogenously specified to represent a fraction of the present value of the liabilities so that $\nu(t)$ takes the form

$$
\nu(t)=\beta F B(r, t ; T)
$$

where β is a fractional constant $(0 \leq \beta<1)$. The special case $\beta=0$ corresponds to nonexistence of intertemporal default. When A_{t} reaches the threshold $\nu(t)$, the bondholders receive only $f_{1}\left(0 \leq f_{1} \leq 1\right)$ fraction of βF. In the case where the strict priority rule is observed, the equity holders would receive nothing, which corresponds to $f_{1}=1$. Suppose the firm value has stayed above the default threshold level $\nu(t)$ throughout the life of the debt, default can occur only at debt maturity. Upon default at maturity, due to possible violation of strict priority rule, the bondholders can receive only $f_{2}\left(0 \leq f_{2} \leq 1\right)$ fraction of the firm asset.

Let T_{ν}^{A} denote the first passage time of the firm value process through the barrier $\nu(t)$, and A_{T} denote the asset value at maturity T. Conditional on the occurrence of intertemporal default, corresponding to $T_{\nu}^{A}<T$, the bondholders receive only f_{1} of the liabilities. When $T_{\nu}^{A} \geq T$, the bond survives until maturity. At maturity time T, the bondholders receive the full par value F if $A_{T} \geq F$ and only a fraction f_{2} of the terminal asset value if $A_{T}<F$.
(a) Show that the value of the risky debt conditional on $A_{t}=A$ and $r_{t}=r$ is given by

$$
V(A, r, t)=B(r, t) E_{Q_{T}}\left[f_{1} \beta F \mathbf{1}_{\left\{T_{\nu}^{A}<T\right\}}+F \mathbf{1}_{\left\{T_{\nu}^{A} \geq T, A_{T} \geq F\right\}}+f_{2} A_{T} \mathbf{1}_{\left\{T_{\nu}^{A} \geq T, A_{T}<F\right\}}\right],
$$

where Q^{T} is the T-forward measure.
(b) We define two ratios, the quasi debt-to-asset ratio $d=F B(r, t ; T) / A$ and bankruptcy ratio $b=\nu / A=\beta d$. Let $p(A, \tau ; F)$ be the European put price function with strike price F. The analytic expression for the put price $p(A, \tau ; F)$ under stochastic interest rate is given by

$$
p(A, \tau ; F)=F N\left(-d_{2}\right)-A B(r, \tau ; T) N\left(-d_{1}\right)
$$

where

$$
d_{2}=-\frac{\ln d}{\sigma_{A, T} \tau}-\frac{\sigma_{A, T} \tau}{2}, \quad d_{1}=d_{2}+\sigma_{A, T} \tau, \quad \tau=T-t
$$

and

$$
\sigma_{A, T}^{2}=\frac{1}{T-t} \int_{t}^{T}\left[\sigma_{A}^{2}-2 \rho \sigma_{A} \sigma_{B}(u, T)+\sigma_{B}^{2}(u, T)\right]^{2} d u
$$

(c) Find the risk neutral probability of default over the time interval $[0, T]$.
11. Assume that the dynamics of the short rate r_{t} and asset value V_{t} under the risk neutral probability measure P^{*} are governed by

$$
\begin{aligned}
d r_{t} & =\kappa\left(\theta-r_{t}\right) d t+\sigma_{r} d W_{r}^{*}, \\
d \ln V_{t} & =\left(r_{t}-\frac{1}{2} \sigma_{V}^{2}\right) d t+\sigma_{V} d W_{V}^{*},
\end{aligned}
$$

where W_{r}^{*} and W_{V}^{*} are standard Brownian motions under the risk neutral probability measure P^{*} and θ is the long-term mean of short rate adjusted by market price of interest rate risk. To allow for dependence between the firm value and the interest rate, we use the default-free discount bond price as the numeraire. The dynamics of the short rate and asset value under the forward martingale measure P_{T} are

$$
\begin{aligned}
d r_{t} & =\kappa\left(\theta-r_{t}-\frac{\sigma_{r}^{2}}{\kappa} B_{\kappa}^{(T-t)}\right) d t+\sigma_{r} d W_{r}^{T} \\
d \ln V_{t} & =\left(r_{t}-\frac{1}{2} \sigma_{V}^{2}-\rho_{r V} \sigma_{r} \sigma_{V} B_{\kappa}^{(T-t)}\right) d t+\sigma_{V} d W_{V}^{T}
\end{aligned}
$$

where $B_{k}^{(T-t)}=\left[1-e^{-\kappa(T-t)}\right] / \kappa$. The firm's default time is defined as

$$
\tau=\inf \left\{t \mid t \geq 0, V_{t} \leq K_{t}\right\}
$$

Hence, the risk neutral default probability of the firm during time period t is

$$
Q(t)=P[\tau<t]=E_{0}^{P^{*}}\left[I_{\{\tau<t\}}\right],
$$

where $E_{0}^{P^{*}}[\cdot]$ is the conditional expectation with respect to P^{*} at time 0 .
We discretize the time interval $[0, T]$ into n_{t} equal intervals, and define the time point $t_{m}=m T / n_{t}=m \Delta t, m=1,2, \ldots, n_{t}$. Similarly, we discretize the r-space into n_{r} equal intervals between some chosen minimum \underline{r} and maximum \bar{r}, and define $r_{k}=\underline{r}+k \Delta r, k=1,2, \ldots, n_{r}$,
where $\Delta r=(\bar{r}-\underline{r}) / n_{r}$. With deterministic default threshold level K_{t}, show that the default probability of the firm during time period T under the forward martingale measure P_{T} is

$$
Q^{T}(T)=\sum_{m=1}^{n_{t}} \sum_{k=1}^{n_{r}} q\left(r_{k}, t_{m}\right)
$$

where

$$
\begin{aligned}
& q\left(r_{k}, t_{1}\right)=\Delta r \Psi\left(r_{k}, t_{1}\right), \quad k \in\left\{1,2, \ldots, n_{r}\right\} \\
& q\left(r_{k}, t_{m}\right)=\Delta r\left[\Psi\left(r_{k}, t_{m}\right)-\sum_{\nu=1}^{m-1} \sum_{u=1}^{n_{r}} q\left(r_{u}, t_{\nu}\right) \psi\left(r_{k}, t_{m} \mid r_{u}, t_{\nu}\right)\right] \\
& \quad k \in\left\{1,2, \ldots, n_{r}\right\}, \quad m \in\left\{2, \ldots, n_{t}\right\} \\
& \Psi\left(r_{t}, t\right)=\pi\left(r_{t}, t \mid r_{0}, 0\right) N\left(\frac{\mu_{i}\left(r_{t}, t \mid l_{0}, r_{0}, 0\right)}{\Sigma_{i}\left(r_{t}, t \mid l_{0}, r_{0}, 0\right)}\right) \\
& \psi\left(r_{t}, t \mid r_{s}, s\right)=\pi\left(r_{t}, t \mid r_{s}, s\right) N\left(\frac{\mu_{i}\left(r_{t}, t \mid 0, r_{s}, s\right)}{\Sigma_{i}\left(r_{t}, t \mid 0, r_{s}, s\right)}\right) .
\end{aligned}
$$

Here, $\pi\left(r_{t}, t \mid r_{s}, s\right)$ is the transition density for the stochastic short rate and $l_{t}=\ln \left(K_{t} / V_{t}\right)$ is the \log leverage ratio of the firm at time t. Also, the conditional mean and variance of l_{t} are defined by

$$
\begin{aligned}
\mu_{i}\left(r_{t}, l_{s}, r_{s}\right) & =E_{s}^{P_{T}}\left[l_{t} \mid r_{t}\right] \\
\Sigma_{i}\left(r_{t}, l_{s}, r_{s}\right) & =\operatorname{var}_{s}^{P_{T}}\left[l_{t} \mid r_{t}\right] .
\end{aligned}
$$

Lastly, show that

$$
\begin{aligned}
& \mu_{i}\left(r_{t}, l_{s}, r_{s}\right)=E_{s}^{P_{t}}\left[l_{t} \mid r_{t}\right]=E_{s}^{P_{T}}\left[l_{t}\right]+\frac{\operatorname{cov}_{s}^{P_{T}}\left[l_{t}, r_{t}\right]}{\operatorname{var}_{s}^{P_{T}}\left[r_{t}\right]}\left(r_{t}-E_{s}^{P_{T}}\left[r_{t}\right]\right) \\
& \Sigma_{i}^{2}\left(r_{t}, l_{s}, r_{s}\right)=\operatorname{var}_{s}^{P_{t}}\left[l_{t} \mid r_{t}\right]=\operatorname{var}_{s}^{P_{T}}\left[l_{t}\right]-\frac{\operatorname{cov}_{s}^{P_{T}}\left[l_{t}, r_{t}\right]^{2}}{\operatorname{var}_{s}^{P_{T}}\left[r_{t}\right]}
\end{aligned}
$$

where

$$
\begin{aligned}
& E_{s}^{P_{T}}\left[l_{t}\right]= l_{s} \\
&+\ln \frac{K_{t}}{K_{s}}-\left(\frac{\theta}{\kappa}-\frac{\sigma_{r}^{2}}{\kappa^{2}}-\frac{\sigma_{V}^{2}}{2}-\frac{\rho_{r V} \sigma_{r} \sigma_{V}}{\kappa}\right)(t-s) \\
&-\left(r_{s}-\frac{\theta}{\kappa}+\frac{\sigma_{r}^{2}}{\kappa^{2}}+\frac{\rho_{r V} \sigma_{r} \sigma_{V}}{\kappa} e^{-\kappa(T-t)}\right) B_{\kappa}^{(t-s)} \\
&-\frac{\sigma_{r}^{2}}{2 \kappa} e^{-\kappa(T-t)}\left(B_{\kappa}^{(t-s)}\right)^{2}, \\
& E_{s}^{P_{T}}\left[r_{t}\right]= r_{s} e^{-\kappa(t-s)}+\left(\kappa \theta-\frac{\sigma_{r}^{2}}{\kappa}\right) B_{\kappa}^{(t-s)}+\frac{\sigma_{r}^{2}}{\kappa} e^{-\kappa(T-t)} B_{2 \kappa}^{(t-s)}, \\
& \operatorname{var}_{s}^{P_{T}}\left[l_{t}\right]=\left(\sigma_{V}^{2}+2 \frac{\rho_{r V} \sigma_{r} \sigma_{V}}{\kappa}+\frac{\sigma_{r}^{2}}{\kappa^{2}}\right)(t-s) \\
&-2\left(\frac{\rho_{r V} \sigma_{r} \sigma_{V}}{\kappa}+\frac{\sigma_{r}^{2}}{\kappa^{2}}\right) B_{\kappa}^{(t-s)}+\frac{\sigma_{r}^{2}}{\kappa^{2}} B_{2 \kappa}^{(t-s)}, \\
& \operatorname{var}_{s}^{P_{T}}\left[r_{t}\right]= \sigma_{r}^{2} B_{2 \kappa}^{(t-s)}, \\
& \operatorname{cov}_{s}^{P_{T}}\left[l_{t}, r_{t}\right]=\left(\frac{\sigma_{r}^{2}}{\kappa}+\rho_{r V} \sigma_{r} \sigma_{V}\right) B_{\kappa}^{(t-s)}-\frac{\sigma_{r}^{2}}{\kappa} B_{2 \kappa}^{(t-s)} .
\end{aligned}
$$

12. By following the procedure of deriving the price formula of a perpetual down-and-out proportional step call option, find the corresponding price formula of a perpetual up-and-out proportional step put option with upstream barrier B, continuous dividend yield q and killing rate ρ. Consider the two limits (i) $\rho=0$, and (ii) $\rho \rightarrow \infty$, of the resulting put price formula. Give the financial interpretation of the respective formula under these two limiting cases.
13. The terminal payoff of a delayed barrier call option is $\mathbf{1}_{\left\{\tau_{B}^{-}<\alpha T\right\}} \max \left(S_{T}-K, 0\right)$, where B is the down-barrier and K is the strike price. Find the time- t price of a seasoned delayed barrier call option during the contract life, $0<t<T$.
14. Let X_{t} be the double exponential jump diffusion process whose moment generating function is defined by

$$
E\left[e^{\theta X_{t}}\right]=\exp (G(\theta) t)
$$

where

$$
G(x)=\mu x+\frac{\sigma^{2}}{2} x^{2}+\lambda\left(\frac{p \eta_{1}}{\eta_{1}-x}+\frac{q \eta_{2}}{\eta_{2}+x}-1\right), \quad p+q=1
$$

Let τ_{b} denote the stopping time at the barrier b and $X_{\tau_{b}}-b$ is the overshoot. Show that
(a) $P\left[X_{\tau_{b}}-b \geq x\right]=e^{-\eta_{1} x} P\left[X_{\tau_{b}}-b>0\right]$;
(b) $E\left[e^{-\alpha \tau_{b}} \mathbf{1}_{\left\{X_{\tau_{b}} \geq b+x\right\}}\right]=e^{-\eta_{1} x} E\left[e^{-\alpha \tau_{b}} \mathbf{1}_{\left\{X_{\left.\tau_{b}-b>0\right\}}\right]}\right]$.

The price of a down-and-out call option is given by

$$
c_{\text {down }}\left(S_{0}, T ; k\right)=E_{Q}\left[e^{-r T} \max \left(S_{T}-e^{k}, 0\right) \mathbf{1}_{\left\{\tau_{b}>T\right\}}\right]
$$

Suppose the underlying asset price process follows the double exponential jump diffusion process specified above, find the fair price of this down-and-out call option.
15. Consider a discretely monitored down-and-out call option with strike price X and barrier level B_{i} at discrete time $t_{i}, i=1,2, \cdots, n$. Show that the price of this European barrier call option is given by

$$
\begin{aligned}
& c_{d_{0}}\left(S_{0}, T ; X, B_{1}, B_{2}, \cdots, B_{n}\right) \\
= & S_{0} N_{n+1}\left(d_{1}^{1}, d_{1}^{2}, \cdots, d_{1}^{n+1} ; \Gamma\right)-e^{-r T} N_{n+1}\left(d_{2}^{1}, d_{2}^{2}, \cdots, d_{2}^{n+1} ; \Gamma\right)
\end{aligned}
$$

where

$$
\begin{aligned}
d_{1}^{i} & =\frac{\ln \frac{S_{0}}{B_{i}}+\left(r+\frac{\sigma^{2}}{2}\right) t_{i}}{\sigma \sqrt{t_{i}}}, \quad d_{2}^{i}=d_{1}^{i}-\sigma \sqrt{t_{i}}, \quad i=1,2, \cdots, n, \\
d_{1}^{n+1} & =\frac{\ln \frac{S_{0}}{X}+\left(r+\frac{\sigma^{2}}{2}\right) T}{\sigma \sqrt{T}}, \quad d_{2}^{n+1}=d_{1}^{n+1}-\sigma \sqrt{T} .
\end{aligned}
$$

Also, Γ is the $(n+1) \times(n+1)$ correlation matrix whose entries are given by

$$
\rho_{j k}=\frac{\min \left(t_{j}, t_{k}\right)}{\sqrt{t_{j}} \sqrt{t_{k}}}, \quad 1 \leq j, k \leq n ; \quad \rho_{j, n+1}=\sqrt{\frac{t_{j}}{T}}, \quad j=1,2, \cdots, n .
$$

16. Explain how the Broadie-Yamamoto method can be applied to price barrier options under Kou's double-exponential jump-diffusion model. Give the details of the algorithmic procedures. What would be the operation counts in the computation?
