
Advanced Topics in Derivative Pricing Models

Topic 3 - Derivatives with averaging style payoffs

3.1 Pricing models of Asian options

• Partial differential approach for continuous models

• Closed form pricing formulas for discretely monitored models

3.2 Put-call parity relations and fixed-floating symmetry relations

3.3 Guaranteed minimum withdrawal benefits
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3.1 Pricing models of Asian options

• Asian options are averaging options whose terminal payoff de-

pends on some form of averaging of the price of the underlying

asset over a part or the whole of option’s life. Many equity-linked

variable annuities products have terminal payoff structures that

are dependent on some averaging form of the corresponding

underlying asset price process.

• There are frequent situations where traders may be interested

to hedge against the average price of a commodity over a period

rather than, say, end-of-period price.

• Averaging options are particularly useful for business involved in

trading on thinly-traded commodities. The use of such financial

instruments may avoid the price manipulation near the end of

the period.
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The most common averaging procedures are the discrete arithmetic

averaging defined by

AT =
1

n

n∑
i=1

Sti

and the discrete geometric averaging defined by

GT =

 n∏
i=1

Sti

1/n .
Here, Sti is the asset price at discrete time ti, i = 1,2, · · · , n.

In the limit n → ∞, the discrete sampled averages become the

continuous sampled averages. The continuous arithmetic average

is given by

AT =
1

T

∫ T
0
St dt,

while the continuous geometric average is defined to be

GT = exp

(
1

T

∫ T
0

lnSt dt

)
.
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Partial differential approach for continuous models

It is necessary to find the change of the path dependent variable

with respect to time. It turns out
dA

dt
(or

dG

dt
) is non-stochastic and

it is dependent on S, t and A (or G).

Fir example, consider It =
∫ t
0
lnSu du, we have

dI = lim
∆t→0

∫ t+∆t

t
lnS du = lim

∆t→0
lnS(u∗) dt = lnS dt, t < u∗ < t+∆t.
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(i) Arithmetic averaging, At =
1

t

∫ t
0
Su du, then

f(S,A, t) =
dA

dt
=

1

t
(S −A).

(ii) Geometric averaging, Gt = exp
(
1

t

∫ t
0
lnSu du

)
, then

f(S,G, t) =
dG

dt
= G

(
lnS − lnG

t

)
.

Partial differential equation formulation

Consider a portfolio which contains one unit of the Asian option

and −∆ units of the underlying asset. We then choose ∆ such

that the stochastic components associated with the option and the

underlying asset cancel off each other.
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Assume the asset price dynamics to be given by

dS = [µS −D(S, t)] dt+ σS dZ,

where Z is the standard Wiener process, D(S, t) is the dividend yield

on the asset, µ and σ are the expected rate of return and volatility

of the asset price, respectively. Let V (S,A, t) denote the value of

the Asian option and let Π denote the value of the above portfolio.

The portfolio value is given by

Π = V (S,A, t)−∆S,

and its differential is found to be

dΠ =
∂V

∂t
dt+f(S,A, t)

∂V

∂A
dt+

∂V

∂S
dS+

σ2

2
S2∂

2V

∂S2
dt−∆ dS−∆D(S, t) dt.

• f(S,A, t)
∂V

∂A
dt is the extra deterministic term added due to the

new path dependent state variable A.

• The ∆ units of stock lead to dividend amount ∆D(S, t) dt col-

lected over dt.
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As usual, we choose ∆ =
∂V

∂S
so that the stochastic terms containing

dS cancel. The absence of arbitrage dictates

dΠ = rΠ dt,

where r is the riskless interest rate. Putting the results together,

we obtain

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ [rS −D(S, t)]

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0.

The equation is a degenerate diffusion equation since it contains

diffusion term corresponding to S only but not for A. The auxiliary

conditions in the pricing model depend on the specific details of the

Asian option contract.
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Continuously monitored geometric averaging options

• We take time zero to be the time of initiation of the averaging

period, t is the current time and T denotes the expiration time.

• We define the continuously monitored geometric averaging of

the asset price Su over the time period [0, t] by

Gt = exp
(
1

t

∫ t
0
lnSu du

)
.

The terminal payoff of the fixed strike call option and floating

strike call option are, respectively, given by

cfix(ST , GT , T ;X) = max(GT −X,0)

cfℓ(ST , GT , T ) = max(ST −GT ,0),

where X is the fixed strike price.
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Pricing formula of continuously monitored fixed strike geo-

metric averaging call option

We assume the existence of a risk neutral pricing measure Q under

which discounted asset prices are martingales, implying the absence

of arbitrage. Under the measure Q, the asset price follows

dSt

St
= (r − q) dt+ σ dZt,

where Zt is a Q-Brownian motion. For 0 < t < T , the solution of

the above stochastic differential equation is given by

lnSu = lnSt+

(
r − q −

σ2

2

)
(u− t) + σ(Zu − Zt), u > t.

Recall that

T lnGT − t lnGt =
∫ T
t

lnSu du.
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By integrating lnSu over [t, T ], we obtain

lnGT =
t

T
lnGt+

1

T

[
(T − t) lnSt+

(
r − q −

σ2

2

)
(T − t)2

2

]

+
σ

T

∫ T
t

(Zu − Zt) du.

The stochastic term
σ

T

∫ T
t

(Zu − Zt) du can be shown to be Gaus-

sian with zero mean and variance
σ2

T2

(T − t)3

3
. By the risk neutral

valuation principle, the value of the European fixed strike Asian call

option is given by

cfix(St, Gt, t) = e−r(T−t)E[max(GT −X,0)],

where E is the expectation under Q conditional on St = S,Gt = G.
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For pricing the fixed strike geometric averaging call option, it suffices

to specify the distribution of GT .

We assume the current time t to be within the averaging period.

By defining

µ =

(
r − q −

σ2

2

)
(T − t)2

2T
and σ =

σ

T

√
(T − t)3

3
,

GT can be written as

GT = G
t/T
t S

(T−t)/T
t exp(µ+ σẐ),

where Ẑ is the standard normal random variable.
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For convenience, we set

F = Gt/TS(T−t)/T .

Recall

E[max(F exp(µ+ σẐ)−X,0]

= Feµ+σ
2/2N

ln F
X + µ+ σ2

σ

−XN

ln F
X + µ

σ

 ,
we then deduce that

cfix(S,G, t) = e−r(T−t)
[
Gt/TS(T−t)/Teµ+σ

2/2N(d1)−XN(d2)
]
,

where

d2 =
(
t

T
lnG+

T − t

T
lnS + µ− lnX

)/
σ,

d1 = d1 + σ.
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European floating strike Asian call option (Geometric averag-

ing)

Since the terminal payoff of the floating strike Asian call option

involves ST and GT , pricing by the risk neutral expectation approach

would require the joint distribution of ST and GT . For floating strike

Asian options, the partial differential equation method provides the

more effective approach to derive the price formula for cfℓ(S,G, t).

This is because the similarity reduction technique can be applied to

reduce the dimension of the differential equation.

When continuously monitored geometric averaging is adopted, the

governing equation for cfℓ(S,G, t) can be expressed as

∂cfℓ

∂t
+
σ2

2
S2∂

2cfℓ

∂S2
+ (r − q)S

∂cfℓ

∂S
+
G

t
ln
S

G

∂cfℓ

∂G
− rcfℓ = 0,

0 < t < T ;

with terminal payoff: cfℓ(S,G, T ) = max(ST −GT ,0).
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We define the similarity variables:

y = t ln
G

S
and W (y, t) =

cfℓ(S,G, t)

S
.

This is equivalent to choose S as the numeraire. The governing

equation for cfℓ(S,G, t) becomes

∂W

∂t
+
σ2t2

2

∂2W

∂y2
−
(
r − q+

σ2

2

)
t
∂W

∂y
− qW = 0, 0 < t < T,

with terminal condition: W (y, T ) = max(1− ey/T ,0).

We write τ = T−t and let F (y, τ ; η) denote the fundamental solution

to the following parabolic equation with time dependent coefficients

∂F

∂τ
=
σ2(T − τ)2

2

∂2F

∂y2
−
(
r − q+

σ2

2

)
(T − τ)

∂F

∂y
, τ > 0,

with initial condition at τ = 0 (corresponding to t = T ) given as

F (y,0; η) = δ(y − η).
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Though the differential equation has time dependent coefficients,

the fundamental solution is readily found to be

F (y, τ ; η) = n

y − η −
(
r − q+ σ2

2

) ∫ τ
0 (T − u) du

σ
√∫ τ

0 (T − u)2 du

 .
The solution to W (y, τ) is then given by

W (y, τ) = e−qτ
∫ ∞

−∞
max(1− eη/T ,0)F (y, τ ; η) dη.

• For unrestricted Brownian motions, even with time dependent

drift and volatility, the transition density function can be found

readily. This is in contrast with a restricted Brownian motion

with barrier (absorbing or reflecting).
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The direct integration of the above integral gives

cfℓ(S,G, t) = Se−q(T−t)N(d̂1)−Gt/TS(T−t)/Te−q(T−t)e−Q̂N(d̂2),

where

d̂1 =
t ln S

G +
(
r − q+ σ2

2

)
T2−t2

2

σ

√
T3−t3

3

, d̂2 = d̂1 −
σ

T

√
T3 − t3

3
,

Q̂ =
r − q+ σ2

2

2

T2 − t2

T
−
σ2

6

T3 − t3

T2
.
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Continuously monitored arithmetic averaging options

We consider a European fixed strike European Asian call based on

continuously monitored arithmetic averaging. The terminal payoff

is defined by

cfix(ST , AT , T ;X) = max (AT −X,0) .

To motivate the choice of variable transformation, we consider the

following expectation representation of the price of the Asian call

at time t

cfix(St, At, t) = e−r(T−t)E [max (AT −X,0)]

= e−r(T−t)E

[
max

(
1

T

∫ t
0
Su du−X +

1

T

∫ T
t
Su du,0

)]

=
St

T
e−r(T−t)E

[
max

(
xt+

∫ T
t

Su

St
du,0

)]
,

where the state variable xt is defined by

xt =
1

St
(It −XT ), It =

∫ t
0
Su du = tAt.
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Recall that
Su

St
= e(r−q−

σ2
2 )(u−t)+σZu−t, so the expectation of

∫ T
t

Su

St
dt

depends on the drift and volatility parameters, with no dependence

on the state variables St and It.

In subsequent exposition, it is more convenient to use It instead of

At as the averaging state variable. Since Su/St, u > t, is independent

of the history of the asset price up to time t, one argues that the

conditional expectation is a function of xt only. We then deduce

that

cfix(St, It, t) = Stf(xt, t)

for some function of f . In other words, f(xt, t) is given by

f(xt, t) =
e−r(T−t)

T
E

[
max

(
xt+

∫ T
t

Su

St
du,0

)]
.
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If we write the price function of the fixed strike call as cfix(S, I, t),

then the governing equation for cfix(S, I, t) is given by

∂cfix

∂t
+
σ2

2
S2∂

2cfix

∂S2
+ (r − q)S

∂cfix

∂S
+ S

∂cfix

∂I
− rcfix = 0.

Suppose we define the following transformation of variables:

x =
1

S
(I −XT ) and f(x, t) =

cfix(S, I, t)

S
,

then the governing differential equation for f(x, t) becomes

∂f

∂t
+
σ2

2
x2
∂2f

∂x2
+ [1− (r − q)x]

∂f

∂x
− qf = 0, −∞ < x <∞, t > 0.

Note that I−XT can be positive or negative, so x can assume values

from −∞ to ∞.
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The terminal condition is given by

f(x, T ) =
1

T
max(x,0).

The difficulty in finding closed form solution stems from the occur-

rence of the linear function 1− (r − q)x in the coefficient of
∂f

∂x
.

When xt ≥ 0, which corresponds to
1

T

∫ t
0
Su du ≥ X, it is possible to

find closed form analytic solution to f(x, t). Since xt is an increasing

function of t so that xT ≥ 0, the terminal condition f(x, T ) reduces

to x/T . In this case, f(x, t) admits solution of the affine form

f(x, t) = a(t)x+ b(t).
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By substituting the assumed form of solution into the governing

equation, we obtain the following pair of governing equations for

a(t) and b(t):

da(t)

dt
− ra(t) = 0, a(T ) =

1

T
,

db(t)

dt
− a(t)− qb(t) = 0, b(T ) = 0.

When r ̸= q, a(t) and b(t) are found to be

a(t) =
e−r(T−t)

T
and b(t) =

e−q(T−t) − e−r(T−t)

T (r − q)
.

Hence, the option value for I ≥ XT is given by

cfix(S, I, t) =
(
I

T
−X

)
e−r(T−t) +

e−q(T−t) − e−r(T−t)

T (r − q)
S.
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Since the option payoff reduces to a forward payoff, it is not surpris-

ing that σ does not appear. The gamma is easily seen to be zero

while the delta is a function of t and T − t but not S or A.

• The first term corresponds to the sure payout
I

T
− x to be paid

at maturity, so its present value is (
I

T
− x)e−r(T−t). The second

term corresponds to the number of units of shares nt used to

replicate the payoff
∫ T
t
Su du. We write

nt = b(t) =
e−q(T−t) − e−r(T−t)

T (r − q)
,

we observe
dnt

dt
− qnt = a(t) =

e−r(T−t)

T
.

• For I < XT , there is no closed form analytic solution.
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Replication of Asian forwards

Under a risk neutral measure Q, the dynamics of stock price St is

governed by

dSt

St
= (r − q) dt+ σ dZt.

Let Xt denote the value of the trading portfolio, consisting of the

riskfree asset and nt units of the risky stock. The trading account

value evolves based on the following self-financing strategy:

dXt = nt dSt+ r (Xt − ntSt)︸ ︷︷ ︸ dt+ ntqSt dt︸ ︷︷ ︸
riskfree asset dividend amount

= rXt dt+ nt(dSt − rSt dt+ qSt dt).

Recall: d(e−rtXt) = e−rt(dXt − rXtdt).
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The portfolio is started with 100% stock. We swap between stock

and riskfree asset so that we keep nt units of stock consistently.

At maturity T , the terminal portfolio value XT replicates the Asian

forward
1

T

∫ T
0
St dt. Given X0 = n0S0, multiplying both sides of the

stochastic differential equation by e−rt and integrating from 0 to T ,

we obtain

e−rTXT − n0S0 =
∫ T
0
e−rtnt(dSt − rSt dt+ qSt dt)

so that

XT = erTn0S0 +
∫ T
0
er(T−t)nt(dSt − rSt dt+ qSt dt).

By virtue of the identity:

d
[
er(T−t)ntSt

]
= er(T−t)nt dSt − rer(T−t)ntSt dt+ er(T−t)St dnt
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we obtain

nTST − erTn0S0 =
∫ T
0
er(T−t)nt(dSt − rSt dt) +

∫ T
0
er(T−t)St dnt.

By setting nT = 0 and combining other results, we have

XT = erTn0S0 + nTST︸ ︷︷ ︸
zero

− erT n0S0︸ ︷︷ ︸
X0

+
∫ T
0
er(T−t)St(ntq dt− n′t dt).

Suppose we aim to replicate
1

T

∫ T
0
St dt by the time-T portfolio value

XT , then nt should observe

dnt

dt
− qnt =

e−r(T−t)

T
, n(T ) = 0.

The solution of the differential equation gives

nt =
e−q(T−t) − e−r(T−t)

(r − q)T
.
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By following the self-financing strategy where we start with n0 units

of stock and no riskfree asset, keeping nt units of stock at time t,

and zero unit (nT = 0) of stock at maturity T , the terminal value of

the portfolio (money market accounts only) becomes
1

T

∫ T
0
Su du.

This is precisely the payoff of an Asian forward.

Therefore, we can replicate the arithmetic average of the stock price

by a self-financing trading strategy on stock.
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Dimension reduction in partial differential equation formula-

tion

We would like to derive the partial differential equation formula-

tion of a floating strike arithmetic averaging option, whose terminal

payoff is
(
ST −KST

)+
, where ST =

1

T

∫ T
0
St dt.

We adopt the share measure and define

Yt =
Xt

eqtSt
,

that is, the share price is used as the numeraire.

According to Ito’s lemma, one can show that

dYt = −
(
Yt − e−qtnt

)
σdZ̃t,

where Ẑt = Zt − σt is a Brownian motion under the share measure

QS.
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Define

V (S0,0;K) = e−rTEQ
[
(XT −KST )

+
]
= S0EQS

[
(YT −K)+

]
= S0u(Y0,0).

The governing equation of u(y, t) is seen to be

∂u

∂t
+
σ2

2

(
y − e−qtnt

)2 ∂2u
∂y2

= 0,

with terminal condition: u(y, T ) = (y −K)+.

• There is no convective term in the pde. It is very straightforward

to solve the pde numerically using finite difference methods.

• Similar result can be deemed for discretely monitored fixed strike

Asian options.
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Closed form pricing formulas for discretely monitored models

Fixed strike options with discrete geometric averaging

Consider the discrete geometric averaging of the asset prices at

evenly distributed discrete times ti = i∆t, i = 1,2, · · · , n, where ∆t

is the uniform time interval between fixings and tn = T is the time

of expiration. Define the running geometric averaging by

Gk =

 k∏
i=1

Sti

1/k , k = 1,2, · · · , n.

The terminal payoff of a European average value call option with

discrete geometric averaging is given by max(Gn − X,0), where X

is the strike price.
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Suppose the asset price follows the Geometric Brownian process,

then the asset price ratio Ri =
Sti
Sti−1

, i = 1,2, · · · , n is lognormally

distributed.

Assume that under the risk neutral measure Q

lnRi ∼ N

((
r −

σ2

2

)
∆t, σ2∆t

)
, i = 1,2, · · · , n,

where r is the riskless interest rate and N(µ, σ2) represents a normal

distribution with mean µ and variance σ2.
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European fixed strike call option

The price formula of the European fixed strike call option depends

on whether the current time t is prior to or after time t0. First, we

consider t < t0 and write

Gn

St
=
St0
St

 Stn
Stn−1

[
Stn−1

Stn−2

]2
· · ·

[
St1
St0

]n
1/n

,

so that

ln
Gn

St
= ln

St0
St

+
1

n

[
lnRn+2 lnRn−1 + · · ·+ n lnR1

]
, t < t0.

Since lnRi, i = 1,2, · · ·n and ln
St0
St

represent independent Brownian

increments over non-overlapping time intervals, they are normally

distributed and independent.
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Observe that ln
Gn

St
is a linear combination of these independent

Brownian increments, so it remains to be normally distributed with

mean (
r −

σ2

2

)
(t0 − t) +

1

n

(
r −

σ2

2

)
∆t

n∑
i=1

i

=

(
r −

σ2

2

) [
(t0 − t) +

n+1

2n
(T − t0)

]
,

and variance

σ2(t0− t)+
1

n2
σ2∆t

n∑
i=1

i2 = σ2
[
(t0 − t) +

(n+1)(2n+1)

6n2
(T − t0)

]
.
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Let τ = T − t, where τ is the time to expiry. Suppose we write

σ2Gτ = σ2
{
τ −

[
1−

(n+1)(2n+1)

6n2

]
(T − t0)

}
(
µG −

σ2G
2

)
τ =

(
r −

σ2

2

) [
τ −

n− 1

2n
(T − t0)

]
,

then the transition density function of Gn at time T , given the asset

price St at an earlier time t < t0, can be expressed as

ψ(Gn;St) =
1

Gn
√
2πσ2Gτ

exp

−
{
lnGn −

[
lnSt+

(
µG − σ2G

2

)
τ

]}2
2σ2Gτ

 .
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By the risk neutral valuation approach, the price of the European

fixed strike call with discrete geometric averaging is given by

cG(St, t) = e−rτEQ[max(Gn −X,0)]

= e−rτ [Ste
µGτN(d1)−XN(d2)] , t < t0

where

d1 =
ln St

X +
(
µG+

σ2G
2

)
τ

σG
√
τ

, d2 = d1 − σG
√
τ.

When n = 1, σ2Gτ and

(
µG −

σ2G
2

)
τ reduce to σ2τ and

(
r −

σ2

2

)
τ ,

respectively, so that the call price reduces to that of a European

vanilla call option. We observe that σ2Gτ is a decreasing function of

n, which is consistent with the intuition that the more frequent we

take the averaging, the lower volatility is resulted.
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When n → ∞, σ2Gτ and

(
µG −

σ2G
2

)
τ tend to σ2

[
τ −

2

3
(T − t0)

]
and(

r −
σ2

2

)(
τ −

T − t0
2

)
, respectively. Correspondingly, discrete geo-

metric averaging becomes its continuous analog. In particular, the

price of a European fixed strike call with continuous geometric av-

eraging at t = t0 is found to be

cG(St0, t0) = St0e
−1

2

(
r+σ2

6

)
(T−t0)

N(d̂1)−Xe−r(T−T0)N(d̂2),

where

d̂1 =
ln
St0
X + 1

2

(
r+ σ2

6

)
(T − t0)

σ
√
T−t0
3

, d̂2 = d̂1 − σ

√
T − t0

3
.
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Next, we consider the in-progress option where the current time t

is within the averaging period, that is, t ≥ t0. Here, t = tk+ ξ∆t for

some integer k,0 ≤ k ≤ n − 1 and 0 ≤ ξ < 1. Now, St1, St2 · · ·Stk, St

are known quantities while the price ratios
Stk+1

St
,
Stk+2

Stk+1

, · · · ,
Stn
Stn−1

are independent lognormal random variables. We may write

Gn =
[
St1 · · ·Stk

]1/n
S
(n−k)/n
t Stn

Stn−1

[
Stn−1

Stn−2

]2
· · ·

[
Stk+1

St

]n−k
1/n

so that

ln
Gn

S̃t
=

1

n

[
lnRn+2 lnRn−1 + · · ·+ (n− k − 1) lnRk+2 + (n− k) lnRt

]
where

S̃t = [St1 · · ·Stk]
1/nS

(n−k)/n
t = G

k/n
k S

(n−k)/n
t and Rt = Stk+1/St.
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Let the variance and mean of ln
Gn

S̃t
be denoted by σ̃2Gτ and

(
µ̃G −

σ̃2G
2

)
τ ,

respectively. They are found to be

σ̃2Gτ = σ2∆t

[
(n− k)2

n2
(1− ξ) +

(n− k − 1)(n− k)(2n− 2k − 1)

6n2

]
and(

µ̃G −
σ̃2G
2

)
τ =

(
r −

σ2

2

)
∆t

[
n− k

n
(1− ξ) +

(n− k − 1)(n− k)

2n

]
.

The price formula of the in-progress European fixed strike call option

takes the form

cG(St, τ) = e−rτ
[
S̃te

µ̃GτN(d̃1)−XN(d̃2)
]
, t ≥ t0,

where

d̃1 =
ln S̃t

X +
(
µ̃G+

σ̃2G
2

)
τ

σ̃G
√
τ

, d̃2 = d̃1 − σ̃G
√
τ.
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Again, by taking the limit n→ ∞, the limiting values of σ̃2G, µ̃G−
σ̃2G
2

and S̃(t) become

lim
n→∞ σ̃2G =

(
T − t

T − t0

)2
σ2

3
, lim

n→∞ µ̃G −
σ̃2G
2

=

(
r −

σ2

2

)
T − t

2(T − t0)
,

and

lim
n→∞ S̃t = S

T−t
T−t0
t G̃t where G̃t = exp

(
1

T − t0

∫ t
t0
lnSu du

)
.

The price of the corresponding continuous geometric averaging call

option can be obtained by substituting these limiting values into the

price formula of the continuous counterpart.
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European fixed strike put option

Using a similar derivation procedure, the price of the corresponding

European fixed strike put option with discrete geometric averaging

can be found to be

pG(S, τ) =

e−rτ [XN(−d2)− SeµGτN(−d1)] , t < t0
e−rτ

[
XN(−d̃2)− S̃eµ̃GτN(−d̃1)

]
, t ≥ t0,

where d1 and d2 are given on p.34, and d̃1 and d̃2 are given on

p.37. The put-call parity relation for the European fixed strike

Asian options with discrete geometric averaging can be deduced to

be

cG(S, τ)− pG(S, τ) =

e−rτSeµGτ −Xe−rτ , t < t0
e−rτ S̃eµ̃Gτ −Xe−rτ , t ≥ t0.
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3.2 Put-call parity relations and fixed-floating symmetry re-

lations

Fixed strike arithmetic averaging options

Let cfix(S, I, t) and pfix(S, I, t) denote the price function of the fixed

strike arithmetic averaging Asian call option and put option, respec-

tively. Their terminal payoff functions are given by

cfix(S, I, T ) = max
(
I

T
−X,0

)
pfix(S, I, T ) = max

(
X −

I

T
,0
)
,

where I =
∫ T
0
Su du. Let D(S, I, t) denote the difference of cfix and

pfix. Since both cfix and pfix are governed by the same equation

so does D(S, I, t). The terminal condition of D(S, I, t) is given by

D(S, I, T ) = max
(
I

T
−X,0

)
−max

(
X −

I

T
,0
)
=

I

T
−X.
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The terminal condition D(S, I, T ) is the same as that of the contin-

uously monitored arithmetic averaging option with I ≥ XT . Hence,

when r ̸= q, the put-call parity relation between the prices of fixed

strike Asian options under continuously monitored arithmetic aver-

aging is given by

cfix(S, I, t)− pfix(S, I, t)

=
(
I

T
−X

)
e−r(T−t) +

e−q(T−t) − e−r(T−t)

T (r − q)
S.

• Note that
(
I

T
−X

)
is the sure amount to be paid at T .

• Without optionality in the terminal payoff, we are able to express

the price function as an affine function in the state variable.

Such analytic tractability persists when the coefficient functions

in the governing pde remain to be affine.
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Floating strike geometric averaging options

Define Jt = e
1
t

∫ t
0 lnSu du; x = lnS, y =

t ln J + (T − t) lnS

T
.

Let C(S, J, t) and P (S, J, t) be the price function of floating strike

geometric averaging call and put, respectively. Let

W (S, J, t) = C(S, J, t)− P (S, J, t).

Within the domain {0 ≤ S <∞, 0 ≤ J <∞, 0 < t < T}, W (S, J, t)

satisfies

∂W

∂t
+ J

lnS − ln J

t

∂W

∂J
+
σ2

2
S2∂

2W

∂S2
+ (r − q)S

∂W

∂S
− rW = 0,

W |t=T = (S − J)+ − (J − S)+ = S − J.
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Set W (S, J, t) ≡ W (x, y, t), within the domain {(x, y) ∈ R2, 0 < t <

T}, W (x, y, t) satisfies

∂W

∂t
+
σ2

2

(
T − t

T

)2 ∂2W
∂y2

+ σ2
(
T − t

T

)
∂2W

∂x∂y

+
σ2

2

∂2W

∂x2
+

(
r − q −

σ2

2

)[
T − t

T

∂W

∂y
+
∂W

∂x

]
− rW = 0,

terminal condition: W |t=T = ex − ey.

We try solution of the form:

W (x, y, t) = a(t)ex − b(t)ey; a(t) and b(t) to be determined.
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Substituting into the governing differential equation, we obtain

a′(t)− qa(t) = 0,

b′(t) +
σ2

2

(
T − t

T

)2
b(t) +

(
r − q −

σ2

2

)(
T − t

T

)
b(t)− rb(t) = 0,

with terminal conditions: a(T ) = 1, b(T ) = 1.

The solution of a(t) and b(t) are given by

a(t) = e−q(T−t),

b(t) = e
σ2(T−t)3

6T2
+

(
r−q−σ

2
2

)
(T−t)2

2T −r(T−t)
.

Finally, the put-call parity relation is given by

C(S, J, t)−P (S, J, t) = Se−q(T−t)−J
t
TS

T−t
T e

σ2(T−t)3
6T2

+

(
r−q−σ

2
2

)
(T−t)2

2T −r(T−t)
.
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Fixed-floating symmetry relations

By applying a change of measure and identifying the time-reversal

of a Brownian motion, it is possible to establish the symmetry rela-

tions between the prices of floating strike and fixed strike arithmetic

averaging Asian options at the start of the averaging period.

Suppose we write the price functions of various continuously moni-

tored arithmetic averaging option at the start of the averaging pe-

riod (taken to be time zero) as

cfℓ(S0, λ, r, q, T ) = e−rTEQ[max(λST −AT ,0)]

pfℓ(S0, λ, r, q, T ) = e−rTEQ[max(AT − λST ,0)]

cfix(X,S0, r, q, T ) = e−rTEQ[max(AT −X,0)]

pfix(X,S0, r, q, T ) = e−rTEQ[max(X −AT ,0)].
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Under the risk neutral measure Q, the asset price St follows the

Geometric Brownian motion

dSt

St
= (r − q) dt+ σ dZt.

Here, Zt is a Q-Brownian motion. Suppose the asset price is used

as the numeraire, then

c∗fℓ =
cfℓ

S0
=

e−rT

S0
EQ[max(λST −AT ,0)]

= EQ

[
STe

−rT

S0

max(λST −AT ,0)

ST

]
.
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To effect the change of numeraire, we define the measure Q∗ by

dQ∗

dQ

∣∣∣∣∣
FT

= e−
σ2
2 T+σZT =

ST e
−rT

S0e−qT
.

By virtue of the Girsanov Theorem, Z∗
T = ZT − σT is Q∗-Brownian.

If we write A∗
T = AT/ST , then

c∗fℓ = e−qTEQ∗[max(λ−A∗
T ,0)],

where EQ∗ denotes the expectation under Q∗.
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We consider

A∗
T =

1

T

∫ T
0

Su

ST
du =

1

T

∫ T
0
S∗
u(T ) du,

where

S∗
u(T ) = exp

(
−
(
r − q −

σ2

2

)
(T − u)− σ(ZT − Zu)

)
.

In terms of the Q∗-Brownian motion Z∗
t , where

ZT − Zu = σ(T − u) + Z∗
T − Z∗

u,

we can write

S∗
u(T ) = exp

((
r − q+

σ2

2

)
(u− T ) + σ(Z∗

u − Z∗
T )

)
.

We define a reflected Q∗-Brownian motion Ẑt such that

Ẑt = −Z∗
t for all t,

then ẐT−u equals in law to −(Z∗
T−Z

∗
u) = Z∗

u−Z∗
T due to the statonary

increment property of a Brownian motion.
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Hence, we establish

A∗
T

law
= ÂT =

1

T

∫ T
0
e
σẐT−u+

(
r−q+σ2

2

)
(u−T )

du,

and via time-reversal of ẐT−u, we obtain

S0ÂT =
1

T

∫ T
0
S0e

σẐξ+
(
q−r−σ2

2

)
ξ
dξ.

Note that ÂTS0 is the arithmetic average of the price process with

drift rate q − r. Summing the results together, we have

cfℓ = S0c
∗
fℓ = e−qTEQ∗[max(λS0 − ÂTS0,0)],

and from which we deduce the following fixed-floating symmetry

relation

cfℓ(S0, λ, r, q, T ) = pfix(λS0, S0, q, r, T ).

Note that we swap r and q in the floating strike and fixed strike

pricing formulas.
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3.3 Guaranteed minimum withdrawal benefit

Product Nature

• Variable annuities — deferred annuities that are fund-linked.

• The single lump sum paid by the policyholder at initiation is

invested in a portfolio of funds chosen by the policyholder —

equity participation.

• The GMWB allows the policyholder to withdraw funds on an

annual or semi-annual basis until the entire principal is returned.

• In 2004, 69% of all variable annuity contracts sold in the US

included the GMWB option.
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Numerical example

• Let the initial fund value be $100,000 and the withdrawal rate

be fixed at 7% per annum. Suppose the investment account

earns 10% in the first two years but earns returns of −60% in

each of the next three years.

Year Rate of

return

Fund value

before

Amount

withdrawn

Fund value

after

Guaranteed

withdrawals
during

the year

withdrawals withdrawals remaining

balance
1 10% 110,000 7,000 103,000 93,000
2 10% 113,300 7,000 106,300 86,000
3 −60% 42,520 7,000 35,520 79,000
4 −60% 14,208 7,000 7,208 72,000
5 −60% 2,883 7,000 0 65,000

• At the end of year five before any withdrawal, the fund value

$2,883 is not enough to cover the annual withdrawal payment

of $7,000.
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The guarantee kicks in when the fund is non-performing

The value of the fund is set to be zero and the policyholder’s 10

remaining withdrawal payments are financed under the writer’s guar-

antee. The policyholder’s income stream of annual withdrawals is

protected irrespective of the market performance. The investment

account balance will have shrunk to zero before the principal is re-

paid and will remain there.

Good performance of the fund

If the market does well, then there will be funds left at policy’s

maturity.
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Numerical example revisited

Suppose the initial lump sum investment of $100,000 is used to

purchase 100 units of the mutual fund, so each unit worths $1,000.

• After the first year, the rate of return is 10% so each unit is

$1,100. The annual guaranteed withdrawal of $7,000 represents

$7,000/$1,100 = 6.364 units. The remaining number of units

of the mutual fund is 100− 6.364 = 93.636 units.

• After the second year, there is another rate of return of 10%,

so each unit of the mutual fund worths $1,210. The withdrawal

of $7,000 represents $7,000/$1,210 = 5.785 units, so the re-

maining number of units = 87.851.
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• There is a negative rate of return of 60% in the third year, so

each unit of the mutual fund worths $484. The withdrawal of

$7,000 represents $7,000/$484 = 14.463 units, so the remain-

ing number of units = 73.388.

• Depending on the performance of the mutual fund, there may

be certain number of units remaining if the fund is performing

or perhaps no unit is left if it comes to the worst senario.

– In the former case, the holder receives the guaranteed total

withdrawal amount of $100,000 (neglecting time value) plus

the remaining units of mutual funds held at maturity.

– If the mutual fund is non-performing, then the total with-

drawal amount of $100,000 over the whole policy life is guar-

anteed.
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How is the benefit funded?

• Proportional fee on the investment account value

— for a contract with a 7% withdrawal allowance, a typical

charge is around 40 to 50 basis points of proportional fee on

the investment account value.

• GMWB can also be seen as a guaranteed stream of 7% per

annum plus a call option on the terminal investment account

value WT , WT ≥ 0. The strike price of the call is zero.

55



Static withdrawal model – continuous version

• The withdrawal rate G (dollar per annum) is fixed throughout

the life of the policy.

• When the investment account value Wt ever reaches 0, it stays

at this value thereafter (absorbing barrier).

τ = inf{t :Wt = 0}, τ is the first passage time of hitting 0.

Under the risk neutral measure Q, the dynamics of Wt is gov-

erned by

dWt = (r − α)Wt dt+ σWt dBt −Gdt, t < τ

Wt = 0, t ≥ τ

W0 = w0,

where α is the proportional annual fee charge on the investment

account as the withdrawal allowance.

policy value = EQ

[∫ T
0
Ge−ru du

]
+ EQ[e

−rTWT ].
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Surrogate unrestricted process

To enhance analytic tractability, the restricted account value process

Wt is replaced by a surrogate unrestricted process W̃t at the expense

of introducing optionality in the terminal payoff (zero strike call

payoff). Consider the modified unrestricted stochastic process:

dW̃t = (r − α)W̃t dt−Gdt+ W̃t dBt, t > 0,

W̃0 = w0.

Solving for W̃t, we obtain

W̃t = Xt

(
w0 −G

∫ t
0

1

Xu
du

)
where

Xt = e

(
r−α+σ2

2

)
t+σBt

.

The solution is the unit exponential Brownian motion Xt multiplied

by the number of units remaining after depletion by withdrawals.

57



Financial interpretation

Take the initial value of one unit of the fund to be unity for con-

venience. Here, Xt represents the corresponding fund value process

with X0 = 1.

• The number of units acquired at initiation is w0. The total

number of units withdrawn over (0, t] is given by G
∫ t
0

1
Xu

du.

• Under the unrestricted process assumption, W̃t may become neg-

ative when the number of units withdrawn exceeds w0. However,

in the actual case, Wt stays at the absorbing state of zero value

once the number of unit withdrawn hits w0.
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Either W̃t > 0 for t ≤ T or W̃T remains negative once Wt reaches

the negative region at some earlier time prior to T .
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Lemma τ0 > T if and only if W̃T > 0.

=⇒ part. Suppose τ0 > T , then by the definition of the first passage

time, we have W̃T > 0.

⇐= part. Recall that

W̃t = Xt

(
w0 −

∫ t
0

G

Xu
du

)
so that

W̃t > 0 if and only if
∫ t
0

G

Xu
du < w0.

Suppose W̃T > 0, this implies that the number of units withdrawn

by time T =
∫ T
0

G
Xu

du < w0. Since Xu ≥ 0, for any t < T , we have

number of units withdrawn by time t =
∫ t
0

G

Xu
du ≤

∫ T
0

G

Xu
du < w0.

Hence, if W̃T > 0, then W̃t > 0 for any t < T .
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Intuition of the dynamics

Once the process W̃t becomes negative, it will never return to the

positive region. This is because when W̃t increases from below back

to the zero level, only the drift term −Gdt survives. This always

pulls W̃t back into the negative region.

Relation between WT and W̃T

Note that WT = 0 if and only if τ ≤ T . We then have

WT = W̃T1{τ>T} = W̃T1{W̃T>0} = max(W̃T ,0).

Optionality in the terminal payoff

The terminal payoff from the investment account becomes

max(W̃T ,0) = GXT

(
w0

G
−
∫ T
0

1

Xu
dx

)+
, x+ = max(x,0).
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Defining Ut =
G

w0

∫ t
0

1

Xu
du and observing T =

w0

G
, we obtain

EQ[e
−rTW̃+

T ] = w0EQ[e
−rTXT (1− UT )

+].

Here, Ut represents the fraction of units withdrawn up to time t,

which captures the path dependence of the depletion process of

the investment account due to the continuous withdrawal process.

Lastly, we have

policy value = EQ

[∫ T
0
Ge−rudu

]
+ w0EQ

[
e−rTXT (1− UT )

+
]
.

The pricing issue is to find the fair value for the participating fee

rate α such that the initial policy value equals the lump sum paid

upfront by the policyholder so that the policy contract is fair to

both counterparties.
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