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4.1 Volatility trading

Characteristics of volatility

• Likely to grow when uncertainty and risk increase.

• Volatilities appear to revert to the mean.

• Volatility is often negatively correlated with stock or index level,

and tends to stay high after large downward moves.

• Stock options are impure: they provide exposure to both di-

rection of the stock price and its volatility. If one hedges the

options according to Black-Scholes prescription, then she can

remove the exposure to the stock price.

Delta-hedging is at best inaccurate since volatility cannot be ac-

curately estimated, stocks cannot be traded continuously, together

with transaction costs and jumps.
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Businesses that are implicitly short volatility (lose when volatility

increases)

• Investors following active benchmarking strategies may require

more frequent rebalancing and incur higher transaction expenses

during volatile periods.

• Equity funds are probably short volatility due to the negative

correlation between index level and volatility.

• Hedge funds that take positions on the spread between stocks of

companies planning mergers will narrow. If volatility increases,

the merger may become less likely and spread may widen.

Volatility swaps are forward contracts on future realized stock volatil-

ity; and similarly, variance swaps on future variance (square of future

volatility). They provide pure exposure to volatility and variance,

respectively.
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Replication of variance swaps - continuous model

The fair strike of a variance swap (continuously monitored) is given

by

Kvar = E0[VR] = E0

(
1

T

∫ T

0
σ2t dt

)
Suppose the asset price process St follows the following Brownian

motion:
dSt

St
= r dt+ σt dWt,

where Wt is the standard Brownian motion and σt is non-stochastic

(though may be state dependent). We may rewrite the dynamics

equation as follows:

d lnSt =

(
r −

σ2t
2

)
dt+ σt dWt.
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Subtracting the two, we obtain

dSt

St
− d lnSt =

σ2t
2

dt

The measure of the continuous realized variance is then given by

VR =
1

T

∫ T

0
σ2t dt =

2

T

(∫ T

0

dSt

St
− ln

St

S0

)
.

The formula dictates the strategy that can be adopted to replicate

the realized variance.

We take
1

St
units of stock at time t paying $1, and enter a “static”

short position at time 0 in a forward contract which at maturity has

a payoff equals to the logarithm of the total return of on the stock

ln
ST

S0
, where

ST

S0
is the total return over [0, T ].
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This is a self-financing strategy

Suppose the stock price goes up, the investor sells
1

St
units of stock

and buys
1

St+dt
units paying $1. The net amount

St+dt

St
−1 is invested

in the riskfree asset. Over the same period, the forward value Ft =

Et

[
ln

ST

S0

]
of the log contract increases in value. The short position

in the log contract offsets the gain on the long stock position. Recall

ln
St+dt

St
≈

St+dt

St
− 1

since ln(1 + x) ≈ x.
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The pricing issue is to find the fair strike of the variance swap.

Kvar = E0[VR] =
2

T
E0

[∫ T

0

dSt

St
− ln

ST

S0

]

=
2

T

E0

[∫ T

0
r dt

]
︸ ︷︷ ︸+E0

[∫ T

0
σt dWt

]
︸ ︷︷ ︸−E0

[
ln

ST

S0

] .

rT zero

The expectation of the long stock position gives rT since the dollar

value of the stock position is always $1. How to replicate the log

contract using basic instruments of forward contracts, calls and

puts?

Technical result For any twice-differentiable function f : R → R,
and any S∗ ≥ 0, we have

f(ST ) = f(S∗) + f ′(S∗)(ST − S∗) +
∫ S∗

0
f ′′(K)(K − ST )

+ dK

+
∫ ∞

S∗
f ′′(K)(ST −K)+ dK.
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Proof

f(ST ) =
∫ S∗

0
f(K)δ(ST −K) dK +

∫ ∞

S∗
f(K)δ(ST −K) dK

= f(K)1{ST<K}
]S∗
0

−
∫ S∗

0
f ′(K)1{ST<K} dK

+ f(K)1{ST≥K}
]∞
S∗

−
∫ ∞

S∗
f ′(K)1{ST≥K} dK

= f(S∗)1{ST<S∗} −
[
f ′(K)(K − ST )

+
]S∗
0

+
∫ S∗

0
f ′′(K)(K − ST )

+ dK

+f(S∗)1{ST≥S∗} −
[
f ′(K)(ST −K)+

]∞
S∗

+
∫ ∞

S∗
f ′′(K)(ST −K)+ dK

= f(S∗) + f ′(S∗)[(ST − S∗)+ − (S∗ − ST )
+]

+
∫ S∗

0
f ′′(K)(K − ST )

+ dK +
∫ ∞

S∗
f ′′(K)(ST −K)+ dK

f(ST )− f(S∗) = f ′(S∗)(ST − S∗) +
∫ S∗

0
f ′′(K)(K − ST )

+ dK

+
∫ ∞

S∗
f ′′(K)(ST −K)+ dK.
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The log payoff ln
ST

S0
can be rewritten as

ln
ST

S0
= ln

ST

S∗
+ ln

S∗
S0

, S∗ is an arbitrage non-negative number.

Applying the technical formula for f(ST ) = lnST , we have

lnST−lnS∗ =
ST − S∗

S∗
−
∫ S∗

0

1

K2
(K−ST )

+ dK−
∫ ∞

S∗

1

K2
(ST−K)+ dK.

• Hold a long position in
1

S∗
forward contracts with forward price

S∗;

• Short positions in
1

K2
put options with strike K, K from 0 to

S∗; short positions in
1

K2
call options with strike K, K from S∗

to ∞.

All contracts have the same maturity T .
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Valuation of fair strike

Kvar =
2

T

{
rT − E0

[
ln

S∗

S0
+

ST − S∗

S∗
−
∫ S∗

0

1

K2
(K − ST)

+ dK −
∫ ∞

S∗

1

K2
(ST −K)+ dK

]}
.

Note that

S0 = e−rTE0[ST ], C0(K) = e−rTE0[(ST −K)+],

P0(K) = e−rTE0[(K − ST )
+].

We then have

Kvar =
2

T

[
rT −

(
S0

S∗
erT − 1

)
− ln

S∗
S0

+ erT
∫ S∗

0

1

K2
P0(K) dK + erT

∫ ∞

S∗

1

K2
C0(K) dK

]
.

The formula requires an infinite number of strikes in order to be

exact, while the market provides only a finite number of options.

10



Profit and loss (P&L) if one hedges at the wrong volatility

• Assume that the futures price process is continuous and that

the true vol is given by some unknown stochastic process σt:

dFt

Ft
= µt dt+ σt dWt, t ∈ [0, T ].

• Assume that a claim on the futures price is sold for an initial

implied vol of σi and that delta-hedging is conducted using the

Black model delta evaluated at a constant hedge vol σh. Apply-

ing Ito’s lemma to V (F, t)er(T−t):

V (FT , T ) = V (F0,0)e
rT +

∫ T

0
er(T−t)∂V

∂F
(Ft, t) dFt

+
∫ T

0
er(T−t)1

2

∂2V

∂F2
(Ft, t) (dFt)

2

+
∫ T

0
er(T−t)

[
∂V

∂t
(Ft, t)− rV (Ft, t)

]
dt.
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• Since the futures has stochastic volatility, (dFt)2 = σ2t F
2
t dt and

so

V (FT , T ) = V (F0,0)e
rT +

∫ T

0
er(T−t)∂V

∂F
(Ft, t) dFt

+
∫ T

0
er(T−t)

[
σ2t F

2
t

2

∂2V

∂F2
(Ft, t) +

∂V

∂t
(Ft, t)− rV (Ft, t)

]
dt.

• Suppose we have chosen our function V (F, t) to be the function

V (F, t;σh) which solves the Black PDE:

σ2hF
2

2

∂2V

∂F2
(F, t;σh) +

∂V

∂t
(F, t;σh)− rV (F, t;σh) = 0,

and the terminal condition: V (F, T ;σh) = f(F ).

• Substitution gives

f(FT ) = V (F0,0;σh)e
rT +

∫ T

0
er(T−t)∂V

∂F
(Ft, t;σh) dFt

+
∫ T

0
er(T−t)[σ2t − σ2h]

F2
t

2

∂2V

∂F2
(Ft, t;σh) dt.
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• Adding V (F0,0;σi)e
rT to both sides and re-arranging, we obtain

P&LT = [V (F0,0;σt)− V (F0,0;σh)]e
rT

+
∫ T

0
er(T−t)F

2
t

2

∂2V

∂F2
(Ft, t;σh)(σ

2
h − σ2t ) dt.

• In words, when we sell the claim for an implied vol of σi ini-

tially, the total P&L from delta-hedging with constant vol σh
over (0, T ) is the future value of the difference in Black Scholes

valuations plus half the accumulated dollar gamma weighted av-

erage of the difference between the hedge variance and the true

variance.

• Note that the P&L vanishes if σt = σh = σi. If
∂2V

∂F2
(Ft, t;σh) ≥ 0

as is true for options, and if σi = σh < σt for all t ∈ [0, T ],

then you sold the claim for too low a vol and a loss results,

regardless of the path. Conversely, if σi > σt for all t ∈ [0, T ],

then delta-hedging at σh = σi guarantees a positive P&L.
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In terms of stock price S0, the P&L is given by

P&L = [V (S0,0;σi)− V (S0,0;σh)]e
rT

+
∫ T

0
er(T−t)(σ2h − σ2t )

S2
t

2

∂2

∂S2
V (St, t;σh) dt.

Let us linearize the first two terms in σ2 around σh. The P&L can

be rewritten as

P&L = TerT (σ2t − σ2h)
S2
0

2

∂2

∂S2
V (S0, t;σh)

+
∫ T

0
er(T−t)(σ2h − σ2t )

S2
t

2

∂2

∂S2
V (St, t;σh) dt.

Define the volatility over the period 0 to T by σ̂, where σ̂ is given

by σ̂2 =
1

T

∫ T

0
σ2t dt.
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The P&L may be expressed as

P&L

= (σ2t − σ̂2)TerT
S2
0

2

∂2

∂S2
V (S0, T ;σh)

+ (σ̂2 − σ2h)T

[
erT

S2
0

2

∂2

∂S2
V (S0, T ;σh)−

1

T

∫ T

0
er(T−t)S

2
t

2

∂2

∂S2
V (St, T − t;σh) dt

]

+
∫ T

0
(σ̂2 − σ2t )e

r(T−t)S
2
t

2

∂2

∂S2
V (St, T − t;σh) dt.

Defining gt as

gt = er(T−t)S
2
t

2

∂2

∂S2
V (St, T − t;σh) =

er(T−t)

2σh

∂

∂σ
V (St, T − t;σh),

then the P&L is thus equal to

P&L = (σ2t −σ̂2)Tg0+(σ̂2−σ2h)T

[
g0 −

1

T

∫ T

0
gt dt

]
+
∫ T

0
(σ̂2−σ2t )gt dt.
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The P&L can be broken up into three components:

P&L = (σ2t − σ̂2)Tg0︸ ︷︷ ︸
1

+(σ̂2 − σ2h)T

[
g0 −

1

T

∫ T

0
gt dt

]
︸ ︷︷ ︸

2

+
∫ T

0
(σ̂2 − σ2t )gt dt︸ ︷︷ ︸

3

.

1. The “variance risk” component or a variance swap exposure for

a notional amount equal to Tg0 and a variance strike equal to

the square of the option implied volatility.

2. The “vega risk” factor, which stems from the fact that the

option is hedged at the implied volatility σh instead of at the

realized volatility σ̂. This term is indeed null if the trader is able

to hedge at the realized but unknown volatility.
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3. The “Volatility path dependency risk” or “model risk” factor

that depends on the historical behavior of realized volatility. Un-

der the Black & Scholes assumption, the instantaneous volatility

σt is constant and thus equal to the realized volatility between

time t and T . However, should the volatility vary over time,

(σ̂2 − σ2t ) will no longer be zero. As gt is a decreasing function

of time to maturity, this term will be positive if instantaneous,

or intraday, volatility rises during the life of the option. The

term also depends on the true distribution of stock returns.

• Based on realistic simulations, the variance risk only represents

52% of the total P&L resulting from delta-hedging an option.

• As a result, delta-hedging options does not provide pure ex-

posure to volatility, given that the P&L not only depends on

variance risk but also on a vega risk which itself results from the

face that risk cannot be hedged at the unknown future realized

volatility and that volatility may not be constant over time.
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Delta-hedging options yields further risk sources

The above analysis was done without taking into account dividends

and by assuming a constant interest rate. In practice, traders face

the risk of unknown dividends being paid during the life of the option,

while with interest rates liable to vary over time, the option vega

may change if the interest rate changes.

Furthermore, option’s delta-hedging is impacted by transaction costs

and liquidity issues. The above analysis does not take into account

the fact that trading stocks is costly and that certain stocks and

indices may lack liquidity.

We need new derivatives instruments that enable investors to take

a view on volatility without bearing any other risks.
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4.2 Volatility swaps

Even though variance swaps can be priced and replicated easily, they

are still less actively traded compared to volatility swaps.

First order approximation:

(
√
VR)

2 − (Ks/d)
2 ≈ 2Ks/d(

√
VR −Ks/d)

or
√
VR −Ks/d ≈

1

2Ks/d

[
VR − (Ks/d)

2
]
, Ks/d =

√
Kvar.

To make Ks/d <
√
Kvar, consider the second order Taylor expansion

of g(VR) =
√
VR around Kvar = E0[VR], we have√

VR ≈
√
Kvar +

1

2
√
Kvar

(VR −Kvar)−
1

8(Kvar)3/2
(VR −Kvar)

2.
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Taking the expected values on both sides, we obtain

Ks/d = E0[
√
VR] ≈

√
Kvar −

1

8(Kvar)3/2
E0[(VR −Kvar)

2]︸ ︷︷ ︸
var0(VR)︸ ︷︷ ︸

convexity correction

The convexity correction represents the mismatch between Ks/d and√
Kvar. Under this approximation, we achieve Ks/d <

√
Kvar.

• The above formula does not give a straightforward formula for

Ks/d since the conditional variance of the realized variance has

to be estimated.

• Broadie and Jain (2008) show that this convexity correction

formula to approximate fair volatility strikes may not provide

good estimates in jump-diffusion models.
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4.3 Pricing of discrete variance swaps

• A discrete variance swap is a forward contract on the discrete

realized variance of the price dynamics of the underlying security.

The floating leg of the discrete variance swap is the discrete

realized variance and is calculated using the second moment of

log returns of the underlying asset.

Rt = ln

(
Sti

Sti−1

)
, i = 1,2, . . . , n.

Here, 0 = t0 < t1 < · · · < tn = T is a partition of the time interval

[0, T ] into n equal segments of length ∆t, i.e., ti = iT/n for each

i = 0,1, . . . , n.
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The discrete realized variance, Vd(0, n, T ) can be written as:

Vd(0, n, T ) =
1

(n− 1)∆t

n∑
i=1

R2
i =

∑n
i=1

(
ln

Sti
Sti−1

)2
(n− 1)∆t

.

The floating leg of the discretely sampled realized variance, Vc(0, T ),

in the limit n → ∞. That is,

Vc(0, T ) ≡ lim
n→∞Vd(0, n, T ) = lim

n→∞
n

(n− 1)T

n∑
i=1

R2
i .
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Heston stochastic volatility model

In this section, we present an analysis of the linear rate of con-

vergence of discrete variance strikes to continuous variance strikes

with number of sampling dates under the Heston stochastic volatility

(SV) model. The Heston model is given by

dSt = rStdt+
√
vtSt(ρdW

1
t +

√
1− ρ2dW2

t )

dvt = κ(θ − vt)dt+ σv
√
vtdW

1
t .

The first equation gives the dynamics of the stock price St and
√
vt is the volatility. The second equation gives the evolution of

the variance which follows a square root process: θ is the long run

mean variance, κ represents the speed of mean reversion, and σv

is a parameter which determines the volatility of the variance pro-

cess. The process W1
t and W2

t are independent standard Brownian

motions under risk-neutral measure Q, and ρ represents the instan-

taneous correlation between the return process and the volatility

process.
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SV model: Continuous variance strike

In the Heston stochastic volatility model, the fair continuous vari-

ance strike K∗
var = E[Vc(0, T )] is given by

E

(
1

T

∫ T

0
vs ds

)
= θ +

v0 − θ

κT
(1− e−κT ).

The fair continuous variance strike in the Heston stochastic volatil-

ity model is independent of the volatility of variance σv. Similarly,

the variance of the continuous realized variance, Var(Vc(0, T )), can

be obtained by calculating the second moment of the Laplace trans-

form.

var

(
1

T

∫ T

t
vs ds

)

=
σ2v e

−2κ(T−t)

2κ3T2
{2[e2κ(T−t) − 2eκ(T−t)κ(T − t)− 1](vt − θ)

+ [4eκ(T−t) − 3e2κ(T−t) +2e2κ(T−t)κ(T − t)− 1]θ}.

The variance of the continuous realized variance depends on the

volatility of variance.
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SV model: Discrete variance strike

In the Heston stochastic volatility model, the expectation of the

discrete realized variance and its continuous counterpart are related

by

E0(Vd(0, n, T )) = E0(Vc(0, T )) + g(r, ρ, σv, κ, θ, n),

where

g(r, ρ, σv, κ, θ, n) =
r2T

n− 1
+

1

T
E

(
1

T

∫ T

0
vt dt

)[
1

n− 1
−

rT

n− 1
+

ρκθT

(n− 1)σv

]

+

∑n−1
i=0 E(

∫ ti+1
t−i

∫ ti+1
ti

vtvs dtds)

(n− 1)∆t

(
1

4
−

ρκ

σv

)

−
∑n−1

i=0 E[ρ(
∫ ti+1
ti

vt dt)(vti+1 − vt−i)]

σv(n− 1)∆t
.
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Since g(r, ρ, σv, κ, θ, n) = O
(
1
n

)
, the expectation of discrete realized

variance converges to the expected continuous realized variance lin-

early with the sampling size (n = T/∆t). That is,

K∗
var(n) = K∗

var + g(r, ρ, σv, κ, θ, n)

and the discrete variance strike converges to the continuous variance

strike linearly with ∆t, where ∆t = T/n.
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4.6 Timer options

A standard timer call option can be viewed as a call option with ran-

dom maturity which depends on the time needed for a pre-specified

variance budget to be fully consumed.

A variance budget is calculated as the target volatility squared, mul-

tiplied by the target maturity.

Mathematical definition

Suppose the asset price is monitored at tj = j∆t, j = 0,1, . . . , n.

The annualized realized variance for the period [0, T ] is defined as

σ̂2T =
1

(n− 1)∆t

n−1∑
i=0

(
ln

Si+1

Si

)2
, T = n∆t.
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The realized variance over time period [0, T ] is

VT = n∆tσ̂2T ≈
n−1∑
i=0

(
ln

Si+1

Si

)2
.

The investor specifies a variance budget

B = σ20T0,

where T0 is the estimated investment horizon and σ0 is the forecast

volatility during the investing period.

The timer call with random maturity pays max(Stj−k,0) at the first

time tj when the realized variance exceeds B. That is,

tj = min

k > 0,
k−1∑
i=0

(
ln

Si+1

Si

)2
≥ B

 .
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Option strategy without paying the volatility risk premium

The price of a vanilla call option is determined by the level of im-

plied volatility quoted in the market (as well as maturity and strike

price). The level of impled volatility is often higher than the real-

ized volatility (risk premium due to the uncertainty of future market

direction).

“High implied volatility means call options are often overpriced. In

the timer option, the investor only pays the real cost of the call and

does not suffer from high implied volatility.”

• The “volatility target” may be set to lower the cost of hedging,

as the implied realized risk premia may be “removed”.
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The first trade was in April 2007 on HSBC with a June expiry.

• The implied volatility on the plain vanilla call was slightly above

15%, but the client sets a target volatility level of 12%, a little

higher than the prevailing realized volatility level of around 10%.

• The premium of the timer call has 20% discount compared to

the vanilla call counterpart.

• The realized volatility has been around 9.5% since the inception

of the trade. The maturity of the timer call is 60% longer than

the original vanilla call.
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Bullish view of the market

Long a timer call, short a vanilla call. Usually, stock price and

volatility are negatively correlated.

• The implied volatility in the market is too high currently, and

subsequent realized volatility will be less than that implied in the

market.

By setting the volatility target to be below the current implied

volatility level (cost of timer call would be less than the compar-

ative vanilla call).

If the stock shifts higher over the period, the tenor of the Timer

Option would be longer; and a net credit would be received that

captures the value due to the difference in Time Value of the two

options.

32


