1. Let X be the standard Gaussian random variable with zero mean and unit standard deviation. Find

(a) $P\left[|X| > \frac{1}{2}\right]$; \hspace{1cm} [3]

(b) the density function of the random variable $|X|$. \hspace{1cm} [3]

Express your answers in terms of $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} \, dt$ and $n(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.

2. Let X and Y be a pair of independent random variables, where X is uniformly distributed over $(0, 1)$ and Y is uniformly distributed over $(-2, 0)$. Find the probability density function of $Z = X/Y$. \hspace{1cm} [6]

3. Let X be the standard Gaussian random variable with zero mean and unit standard deviation. Let I, independent of X, be such that

$$ P[I = 0] = P[I = 1] = \frac{1}{2}. $$

Define

$$ Y = \begin{cases} X & \text{if } I = 1 \\ -X & \text{if } I = 0 \end{cases}, $$

that is, Y is equally likely to equal either X or $-X$.

(a) Is Y a Gaussian random variable? Find its mean and variance.

Hint: $P[Y \leq y] = P[X \leq y|P[I = 1] + P[X \geq -y|P[I = 0]$

$$ = \frac{1}{2} \left[\int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt + \int_{-\infty}^{-y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt \right] $$

and make use of the symmetry property of the integrand function. \hspace{1cm} [3]

(b) Compute $\text{COV}(X, Y)$.

Hint: $\text{COV}(X, Y) = E[XY] - E[X]E[Y]$ and $E[XY] = E[E[XY|I]]$. \hspace{1cm} [3]
4. Let X and Y be random variables that take on values from the set $\{0, 1, 2\}$.
 (a) Find a joint probability mass assignment for which X and Y are independent, and illustrate that X^2 and Y^2 are also independent.
 \[\text{[3]} \]
 (b) Can we find a joint pmf assignment for which X and Y are not independent, but for which X^2 and Y^2 are independent? If yes, find an example; if not, explain why.
 \[\text{[3]} \]

5. An urn contains n white and m black balls. One ball is drawn randomly at a time until the first white ball is drawn.
 (a) Let X denote the number of black balls that are drawn before the first white ball appears. We write $M(n,m)$ to be the expected value of X (showing its dependence on n and m). Explain why
 \[M(n, m) = E[X] = E[X|Y = 1]P[Y = 1] + E[X|Y = 0]P[Y = 0] \]
 where Y is the discrete random variable defined by
 \[
 Y = \begin{cases}
 1 & \text{if the first ball selected is white} \\
 0 & \text{if the first ball selected is black}
 \end{cases}
 \]
 then show that $M(n, m) = \frac{m}{n+m}[1 + M(n, m - 1)]$.
 \[\text{[3]} \]
 (b) Explain why $M(n, 0) = 0$, show that $M(n, 1) = \frac{1}{n+1}, M(n, 2) = \frac{2}{n+1}, M(n, 3)$
 \[\text{[3]} \]
 \[= \frac{3}{n+1}; \text{ then deduce the value of } M(n, m). \]

--- End ---