MATH 246 — Probability and Random Processes

Solution to Test Two

Fall 2002

Course Instructor: Prof. Y. K. Kwok

1. (a)

\[P \left[|X| > \frac{1}{2} \right] = 1 - P \left[-\frac{1}{2} \leq X \leq \frac{1}{2} \right] = 1 - \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt
- 1 - \left[N \left(\frac{1}{2} \right) - N \left(-\frac{1}{2} \right) \right]. \]

(b) Consider

\[P\{ |X| \leq x \} = P\{ -x \leq X \leq x \}, \quad x \geq 0 \]

so that

\[f_{\mid X\mid}(x) = \frac{d}{dx} P\{ |X| \leq x \} = \frac{d}{dx} [N(x) - N(-x)] = 2n(x). \]

2.

\[f_Z(z) = \int_{-\infty}^{\infty} |y| f_{XY}(y, z) \, dy; \quad f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}, \quad f_Y(y) = \begin{cases} \frac{1}{2} & -2 < y < 0 \\ 0 & \text{otherwise} \end{cases} \]

and since \(X \) and \(Y \) are independent

\[f_{XY}(y, z) = \begin{cases} \frac{1}{2} & 0 < yz < 1 \text{ and } -2 < y < 0 \\ 0 & \text{otherwise} \end{cases} \]

Consider the following cases

(i) when \(z > 0 \), \(yz \) is always negative, so \(0 < yz < 1 \) is never satisfied;
(ii) when \(-\frac{1}{2} < z < 0 \), both \(0 < yz < 1 \) and \(-2 < y < 0 \) are satisfied;
(iii) when \(z < -\frac{1}{2} \), we observe \(0 < yz < 1 \Leftrightarrow \frac{1}{z} < y < 0. \)

We then have

(i) \(-\frac{1}{2} < z < 0 \), \(f_Z(z) = \int_{-\frac{1}{2}}^{0} \frac{1}{2} |y| \, dy = \int_{-\frac{1}{2}}^{0} -\frac{y}{2} \, dy = 1. \)

(ii) \(z < \frac{1}{2} \), \(f_Z(z) = \int_{1/z}^{0} \frac{y}{2} \, dy = \frac{-yz^2}{4} \bigg|_{1/z}^{0} = \frac{1}{4z^2}. \)

In summary, \(f_Z(z) = \begin{cases} \frac{1}{2} & -\frac{1}{2} < z < 0 \\ 0 & z < -\frac{1}{2} \end{cases} \).

As a check, consider

\[\int_{-\infty}^{\infty} f_Z(z) \, dz = \int_{-\infty}^{-1/2} \frac{1}{4z^2} \, dz + \int_{-1/2}^{0} \frac{1}{2} \, dz = \int_{-\infty}^{-\frac{1}{2}} \frac{1}{4z^2} + \frac{1}{2} \bigg|_{-\frac{1}{2}}^{0} = \frac{1}{2} + \frac{1}{2} = 1. \]

3. (a)
\[P[Y \leq y] = P[X \leq y]P[I = 1] + P[X \geq -y]P[I = -1] \\
= \frac{1}{2} \left[\int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt + \int_{-\infty}^{-y} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \right]. \]

Since the Gaussian density function is symmetric, \(P[Y \leq y] = N(y) \) and \(f_Y(y) = n(y) \) so that \(Y \) is also a Gaussian random variable. The mean and variance of \(Y \) are zero and one, respectively.

\[E[XY] = E[E[XY|\ell]] = \frac{1}{2} \{ E[X^2] + E[-X^2] \} = 0. \]

4. (a)

<table>
<thead>
<tr>
<th>(P_{XY}(x, y))</th>
<th>(x_1 = 0)</th>
<th>(x_2 = 1)</th>
<th>(x_3 = 2)</th>
<th>(P_Y(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1 = 0)</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(y_1 = 1)</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(y_2 = 2)</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(P_X(x))</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
</tr>
</tbody>
</table>

Note that \(P_{XY}(x, y) \) is \(P_X(x)P_Y(y) \) for all \(x \) and \(y \), so \(X^2 \) and \(Y^2 \) are also independent.

(b) For each \(x \in S_X \), there corresponds to only one \(x_k \in S_X \) where \(x_k \) is the positive square root of \(x \). We then have \(P_{XY}(x, y) = P_X(\sqrt{x}) = P_X(x) \), and the same rule applies for the \(y_j \). So \(X^2 \) and \(Y^2 \) are independent, that is, \(P_{X^2Y^2}(x, y) = P_{X^2}(x)P_{Y^2}(y) \), then we observe that \(P_{XY}(x, y) = P_X(x)P_Y(y) \) so that \(X \) and \(Y \) must be independent.

5. (a) \(M(n, m) = E[X|Y = 1]P[Y = 1] + E[X|Y = 0]P[Y = 0] \) from the Law of Total Probability. It is seen that \(P[Y = 1] = \frac{n}{n+m}, P[Y = 0] = \frac{m}{n+m}, E[X|Y = 1] = 0, E[X|Y = 0] = 1 + M(n, m-1) \). The “one” comes in since one black ball has been drawn; after then there are \(m-1 \) black balls and \(n \) white balls remaining.

(b) \(M(n, 0) = 0 \) since there is no black ball remaining, \(M(n, 1) = \frac{1}{n+1}(1+0) = \frac{1}{n+1} \). \(M(n, 2) = \frac{2}{n+2} \left[1 + \frac{1}{n+1} \right] = \frac{2}{n+1} \). In general, \(M(n, m) = \frac{m}{n+1} \).