Review of Topics — Random Processes

1. Random Process
 (a) Definition
 A random process is an indexed family of random variables
 \[X(t) - X(\varepsilon, t), \quad t \in I. \]
 Equivalently, a random process is a function of \(\varepsilon \) and \(t \).
 (b) Interpretation of a random process \(X(t) \)
 • \(\varepsilon \) and \(t \) are variables:
 \(X(t) \) is a family of functions \(X(\varepsilon, t) \).
 • \(\varepsilon \) is fixed, \(t \) is a variable:
 \(X(t) \) is a single time function, called sample path.
 • \(\varepsilon \) is a variable, \(t \) is fixed:
 \(X(t) \) is a random variable
 • \(\varepsilon \) and \(t \) are fixed:
 \(X(t) \) is a number.
 (c) Let \(S \) be the sample space of \(X(t) \). Then \(X(t) \) is called
 • a discrete-valued process if \(S \) is discrete;
 a continuous-valued process if \(S \) is continuous;
 • a discrete-time process if \(I \) is discrete;
 a continuous-time process if \(I \) is continuous.
 (d) Examples of random processes
 • A binomial random process \(Y(n) = Y_n, n = 1, 2, \ldots \) versus \(Y \)
 \[\begin{pmatrix} \text{discrete-time} \\ \text{discrete-valued} \end{pmatrix} \quad \text{(discrete random variable)} \]
 • Let \(Z(t) \) be the balance in your bank account at time \(t \), then \(Z(t), t \geq 0 \), is a continuous-time, continuous-valued random process.

2. Specifying a random process by joint CDF. A random process can be described by specifying the collection of \(k \)th-order joint CDF’s
 \[F_{X_1,\ldots,X_k}(x_1, \ldots, x_k) = P[X_1 \leq x_1, \ldots, X_k \leq x_k] \]
 for all \(k \) and all choices at sampling instants \(t_1, t_2, \ldots, t_k \).

3. Mean, Autocorrelation and Autocovariance of \(X(t) \)
 • Mean
 \[m_X(t) = E[X(t)] - \int_{-\infty}^{\infty} x f_X(x) \, dx \]
• Autocorrelation

\[R_X(t_1, t_2) = E[X(t_1)X(t_2)] = \int_{-\infty}^{\infty} x_1 x_2 f_{X(t_1), X(t_2)}(x_1, x_2) \, dx_1 dx_2 \]

• Autocovariance

\[C_X(t_1, t_2) = E[(X(t_1) - m_X(t_1))(X(t_2) - m_X(t_2))] = R_X(t_1, t_2) - m_X(t_1)m_X(t_2) \]

• \(\text{VAR}[X(t)] = E[(X(t) - m_X(t))^2] = C_X(t, t) \)

\[\rho_X(t_1, t_2) = \frac{C_X(t_1, t_2)}{\sqrt{C_X(t_1, t_1) \cdot C_X(t_2, t_2)}} \]

4. Cross-correlation, cross-covariance of \(X(t) \) and \(Y(t) \)

• Cross-correlation

\[R_{X,Y}(t_1, t_2) = E[X(t_1)Y(t_2)] \]

• Cross-covariance

\[C_{X,Y}(t_1, t_2) = E[(X(t_1) - m_X(t_1))(Y(t_2) - m_Y(t_2))] = R_{X,Y}(t_1, t_2) - m_X(t_1)m_Y(t_2) \]

\(C_{X,Y}(t_1, t_2) = 0, \text{ for all } t_1, t_2 \)

\(\Rightarrow X(t) \text{ and } Y(t) \text{ are uncorrelated random processes.} \)

5. Independence of random process

• \(X(t) \) is called an independent random process if all subsets of random variables are independent, i.e.,

\[X(t_1), X(t_2), \ldots, X(t_k) \]

are independent for all \(k \) and all choices of \(t_1, t_2, \ldots, t_k \).

• \(X(t) \) and \(Y(t) \) are said to be independent if

\[[X(t_1), \ldots, X(t_k)] \text{ and } [Y(t'_1), \ldots, Y(t'_k)] \]

are independent random vectors for all \(k, j \) and all choices of \(t_1, t_2, \ldots, t_k \) and \(t'_1, t'_2, \ldots, t'_k \).

6. Independent and identically distributed random process

Denote \(m \) = common mean, \(\sigma^2 \) = common variance

• \(m_X(n) = m, \text{ independent of } n \)

• \(C_X(n, k) = \sigma^2 \delta_{n,k} \)

Example: Bernoulli random process
7. Increments of random process: \(X(t + h) - X(t) \), fixed \(h \)
 - \(X(t + h) - X(t) \) is a random variable
 - \(X(t) \) has stationary increments if random variables
 \[
 X(t_1 + h) - X(t_1) = Y_1, X(t_2 + h) - X(t_2) = Y_2
 \]
 have the same distribution for all \(t_1, t_2 \). That is,
 \[
 E[Y_1] = E[Y_2], \quad \text{VAR}[Y_1] = \text{VAR}[Y_2].
 \]
 - \(X(t) \) has independent increments if random variables
 \[
 X(t_2) - X(t_1), \ldots, X(t_k) - X(t_{k-1})
 \]
 are independent for all \(k \) and all choices of \(t_1 < t_2 < \cdots < t_k \).

8. Markov Process
 \(X(t) \) is said to be Markov if the future of the process given the present is independent of the past.

9. Sum Process, \(S_n \)
 - \(S_n = \sum_{i=1}^{n} X_i, X_i's \) are iid random variables, \(n \geq 1 \) and \(S_0 = 0 \)
 - \(S_n \) is a discrete-time random process
 - Denote \(m_x = \) common means of \(X_i's, \sigma_X^2 = \) common variance of \(X_i's \)
 \[
 m_S(n) = nm_X, \quad \text{VAR}[S(n)] = n\sigma_X^2
 \]
 \[
 C_S(n, k) = \min(n, k)\sigma_X^2
 \]
 - \(S_n \) is a Markov process since
 \[
 P[S_n - \alpha_n|S_{n-1} - \alpha_{n-1}] = P[S_n - \alpha_n|S_{n-1} - \alpha_{n-1}, \ldots, S_1 - \alpha_1]
 \]
 - \(S_n \) has independent and stationary increments. That is,
 \[
 f_{S_n, S_k}(y_n, y_k) = f_{S_n}(y_n)f_{S_{n-k}}(y_n - y_k), \quad k > n
 \]
 - \(S_n \) is called the binomial counting process if \(X_i's \) are iid Bernoulli random variables.

Poisson Process \(N(t) \)

10. Definition
 - \(N(t) \) - number of event occurrences in \([0, t]\)
 - pmf: \(P[N(t) = k] = \frac{(\lambda t)^k}{k!}e^{-\lambda t}, \quad k = 0, 1, 2, \ldots \)

11. Properties
 - \(N(t) \) is a non-decreasing, continuous-time and discrete-valued random process
• $N(t)$ has independent and stationary increments

12. Inter-event time T in a Poisson Process
• T – time between event occurrences
• Inter-event times T_i's are i.i.d. exponential random variables with mean $\frac{1}{\lambda}$

13. Occurrence of the n^{th} event, $S_n = \sum_{i=1}^{n} T_i$

14. The sum of independent Poisson random variables is also a Poisson random variable.