MATH 246 - Probability and Random Processes
Final Examination
Fall 2004

Time allowed: 100 minutes

1. A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that will take him to safety after 3 hours of travel. The second door leads to a tunnel that will return him to the mine after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7 hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?
Hint: Let X be the amount of time (in hours) until the miner reaches safety, and let Y denote the door he initially chooses. By the rule of conditional expectation

$$
\begin{aligned}
E[X]= & E[X \mid Y=1] P[Y=1]+E[X \mid Y=2] P[Y=2] \\
& +E[X \mid Y=3] P[Y=3]
\end{aligned}
$$

2. Consider the pair of random variables X and Y whose joint density function is given by

$$
f_{X Y}(x, y)= \begin{cases}\frac{1}{\pi} & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Show that X and Y are uncorrelated. Are they independent?
3. The time between consecutive earthquakes in San Francisco and the time between consecutive earthquakes in Los Angeles are independent and exponentially distributed with means $\frac{1}{\lambda_{1}}$ and $\frac{1}{\lambda_{2}}$, respectively. What is the probability that the next earthquake occurs in Los Angeles?
4. Let X and Y be a pair of independent random variables, where X is uniformly distributed over $(-1,1)$ and Y is uniformly distributed over $(0,2)$. Find the probability density of $Z=X / Y$.
Hint: Explain why

$$
f_{Z}(z)=\int_{-\infty}^{\infty}|y| f_{X Y}(y z, y) d y
$$

The region $\{(y, z):-1<y z<1$ and $0<y<2\}$ can be divided into 3 regions, according to (i) $z<-\frac{1}{2}$, (ii) $-\frac{1}{2} \leq z \leq \frac{1}{2}$ and (iii) $z>\frac{1}{2}$.
5. Let $N(t), t \geq 0$, be a Poisson process with parameter $\lambda>0$.
(a) Show that the autocovariance $C_{N}\left(t_{1}, t_{2}\right)$ of $N(t)$ is given by

$$
C_{N}\left(t_{1}, t_{2}\right)=\lambda \min \left(t_{1}, t_{2}\right)
$$

In your derivation steps, explain clearly how you use the stationary increments and independent increments properties of a Poisson process.
(b) Suppose a Poisson event is known to have occurred over the time period $[0,1]$, show that the probability of the event occurring before time $t, 0<t<1$, is equal to t.
Hint: Consider

$$
P[N(t)=1 \mid N(1)=1], \quad \text { where } \quad 0<t<1
$$

6. Let $X(t)=A \cos \omega t+B \sin \omega t$, where A and B are independent and identically distributed Gaussian random variables with zero mean and variance σ^{2}. Find the mean and autocovariance of $X(t)$.
7. A machine consists of two parts that fail and are repaired independently. A working part fails during any given day with probability α. A part that is not working is repaired by the next day with probability β. Let X_{n} be the number of working parts in day n. The sample space of X_{n} is $\{0,1,2\}$. We write

$$
\pi_{n, j}=P\left[X_{n}=j\right], \quad j=0,1,2
$$

(a) Find the one-step transition probability matrix P, expressed in terms of α and β. If the initial state pmf vector is

$$
\boldsymbol{\pi}_{0}=\left(\begin{array}{lll}
\pi_{0,0} & \pi_{0,1} & \pi_{0,2}
\end{array}\right)=\left(\begin{array}{lll}
0.3 & 0.3 & 0.4
\end{array}\right)
$$

find $P\left[X_{2}=1, X_{1}=2, X_{0}=0\right]$.
(b) Let $\boldsymbol{\pi}_{n}$ be the state pmf vector after n steps and $\boldsymbol{\pi}_{\infty}$ be the steady state pmf vector. Find $\boldsymbol{\pi}_{n}$ in terms of P and $\boldsymbol{\pi}_{0}$. Show that $\boldsymbol{\pi}_{\infty}$ is governed by

$$
\boldsymbol{\pi}_{\infty}=\boldsymbol{\pi}_{\infty} P
$$

Explain why all the rows of the matrix $\lim _{n \rightarrow \infty} P^{n}$ are equal to $\boldsymbol{\pi}_{\infty}$.

List of useful formulae

Binomial Random Variable
$S_{X}=\{0,1, \ldots, n\}$

$$
p_{k}=C_{k}^{n} p^{k}(1-p)^{n-k} \quad k=0,1, \ldots, n
$$

$E[X]=n p \quad \operatorname{VAR}[X]=n p(1-p)$
Poisson Random Variable
$S_{X}=\{0,1,2, \ldots\}$

$$
p_{k}=\frac{\alpha^{k}}{k!} e^{-\alpha} \quad k=0,1, \ldots \text { and } \alpha>0
$$

$E[X]=\alpha \quad \operatorname{VAR}[X]=\alpha$

Uniform Random Variable
$S_{X}=[a, b]$

$$
f_{X}(x)=\frac{1}{b-a} \quad a \leq x \leq b
$$

$E[X]=\frac{a+b}{2} \quad \operatorname{VAR}[X]=\frac{(b-a)^{2}}{12}$
Exponential Random Variable
$S_{X}=[0, \infty)$

$$
f_{X}(x)=\lambda e^{-\lambda x} \quad x \geq 0 \text { and } \lambda>0
$$

$E[X]=\frac{1}{\lambda} \quad \operatorname{VAR}[X]=\frac{1}{\lambda^{2}}$
Gaussian (Normal) Random Variable
$S_{X}=(-\infty, \infty)$

$$
f_{X}(x)=\frac{e^{-(x-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma} \quad-\infty<x<\infty \quad \text { and } \quad \sigma>0
$$

$E[X]=m \quad \operatorname{VAR}[X]=\sigma^{2}$
Relations between pdf's when $Y=g(X)$
(i) $Y=a X+b$

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

(ii) a non-linear function $Y=g(X)$

$$
f_{Y}(y)=\left.\sum_{k} \frac{f_{X}(x)}{\left|\frac{d y}{d x}\right|}\right|_{x=x_{k}}
$$

Marginal pdf's

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}\left(x, y^{\prime}\right) d y^{\prime} \quad \text { and } \quad f_{Y}(y)=\int_{-\infty}^{\infty} f_{X Y}\left(x^{\prime}, y\right) d x^{\prime}
$$

Independence of X and Y
X and Y are independent if and only if $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$, for all x, y
Conditional pdf of Y given $X=x$

$$
f_{Y}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

Conditional expectation of Y given $X=x$
Continuous $\quad E[Y \mid x]=\int_{-\infty}^{\infty} y f_{Y}(y \mid x) d y$
discrete $\quad F[Y \mid x]=\sum_{y_{j}} y_{j} P_{Y}\left(y_{j} \mid x\right)$
Functions of several random variables
(i) $Z=X+Y, \quad F_{Z}(z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x^{\prime}} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime}$

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X Y}\left(x^{\prime}, z-x^{\prime}\right) d x^{\prime}
$$

If X and Y are independent, then $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}\left(x^{\prime}\right) f_{Y}\left(z-x^{\prime}\right) d x^{\prime}$
(ii) $Z=X / Y, \quad f_{Z}(z \mid y)=|y| f_{X}(y z \mid y)$

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{Z}\left(z \mid y^{\prime}\right) f_{Y}\left(y^{\prime}\right) d y^{\prime}
$$

Correlation and covariance of two random variables
$\operatorname{COV}(X, Y)=E\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right]$, where m_{X} and m_{Y} are $E[X]$ and $E[Y]$, resp.
$\rho_{X Y}=\frac{\operatorname{COV}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}}$
autocovariance $C_{X}\left(t_{1}, t_{2}\right)$ of a random process $X(t)$

$$
C_{X}\left(t_{1}, t_{2}\right)=E\left[\left\{X\left(t_{1}\right)-m_{X}\left(t_{1}\right)\right\}\left\{X\left(t_{2}\right)-m_{X}\left(t_{2}\right)\right\}\right]
$$

