1. Note that for all \(n \),
\[
X_n = \begin{cases}
1 & \text{if the outcome is } H \\
-1 & \text{if the outcome is } T
\end{cases}
\]

(a) The only two sample paths:

(b) Given that the coin is fair, we have
\[
P[X_n = 1] = P[\text{outcome is } H] = \frac{1}{2}
\]
\[
P[X_n = -1] = P[\text{outcome is } T] = \frac{1}{2}
\]

(c) \(P[X_n = 1, X_{n+k} = 1] = P[X_n = 1] = \frac{1}{2} \)
\[
P[X_n = -1, X_{n+k} = -1] = P[X_n = -1] = \frac{1}{2}
\]
\[
P[X_n = 1, X_{n+k} = -1] = P[\phi] = 0
\]
\[
P[X_n = -1, X_{n+k} = 1] = P[\phi] = 0
\]

Hence, the joint pmf
\[
P[X_n = i, X_{n+k} = j] = \begin{cases}
\frac{1}{2}, & i = j \\
0, & i \neq j
\end{cases}
\]

(d) \(P[X_n] = (1)P[X_n = 1] + (-1)P[X_n = -1] = \frac{1}{2} - \frac{1}{2} = 0. \)

\[
C_X(n_1, n_2) = E[(X_{n_1} - E[X_{n_1}])[X_{n_2} - E[X_{n_2}]]]
= E[X_{n_1}X_{n_2}]
= (1)(1)P[X_{n_1} = 1, X_{n_2} = 1] + (-1)(-1)P[X_{n_1} = -1, X_{n_2} = -1]
= \frac{1}{2} + \frac{1}{2} = 1.
\]
2. (a) \(E[Z(t)] = E[Xt + Y] = tm_X + m_Y \)

\[
C_Z(t_1, t_2) = E[\{(Xt_1 + Y) - (t_1m_X + m_Y)\}\{(Xt_2 + Y) - (t_2m_X + m_Y)\}]
= E[\{(t_1(X - m_X) + (Y - m_Y))\}\{(t_2(X - m_X) + (Y - m_Y))\}]
= t_1t_2E[(X - m_X)^2] + t_1E[(X - m_X)(Y - m_Y)]
+ E[(Y - m_Y)^2] + t_2E[(Y - m_Y)(X - m_X)]
= t_1t_2\sigma_X^2 + (t_1 + t_2)\sigma_X\sigma_Y + \sigma_Y^2.
\]

(b) For joint Gaussian random variables (see Example 4.50, page 244 of textbook), if \(X \) and \(Y \) are jointly Gaussian random variables, then \(Z(t) = Xt + Y \) is also a Gaussian random variable for any fixed \(t \).

By part (a),

\[m_Z(t) = tm_X + m_Y, \]

\[\text{VAR}[Z(t)] = C_Z(t, t) = t^2\sigma_X^2 + 2t\sigma_X\sigma_Y + \sigma_Y^2. \]

Hence, the pdf of \(Z(t) \) is

\[
f_{Z(t)}(z) = \frac{1}{\sqrt{2\pi\text{VAR}[Z(t)]}} \exp \left\{ -\frac{1}{2\text{VAR}[Z(t)]}(z - m_Z(t))^2 \right\}.
\]

3. Note that a binomial counting process has independent and stationary increments.

(a) Without loss of generality, we assume \(n' > n \).

\[
P[S_n = j, S_{n'} = i]
= P[S_n = j, S_{n'} - S_n = i - j] \quad \text{for} \quad i \geq j, 0 \leq j \leq n, 0 \leq i \leq n',
= P[S_n = j]P[S_{n'} - S_n = i - j]
= P[S_n = j]P[S_{n'} - n = i - j]
\neq P[S_n = j]P[S_{n'} = i].
\]

(b) Note that \(n_2 > n_1 \Rightarrow S_{n_2} \geq S_{n_1} \).

When \(i > j \),

\[
P[S_{n_2} = j | S_{n_1} = i] = P[\emptyset] = 0.
\]

When \(i \leq j \),

\[
P[S_{n_2} = j | S_{n_1} = i]
= P[S_{n_2} - S_{n_1} = j - i | S_{n_1} = i]
= P[S_{n_2} - S_{n_1} = j - i]
= P[S_{n_2} - n_1 = j - i]
= C_{n_2-n_1}^{n_2-i}p^{n_2-i}(1-p)^{n_2-n_1-j+i}.
\]

(c) We only need to prove the case when \(j \geq i \geq k \geq 0 \), otherwise, the probabilities on both sides are zero.
For \(n_2 > n_1 > n_0, j \geq i \geq k \geq 0, \)

\[
\begin{align*}
P[S_{n_2} = j|S_{n_1} = i, S_{n_0} = k] &= \frac{P[S_{n_2} = j, S_{n_1} = i, S_{n_0} = k]}{P[S_{n_1} = i, S_{n_0} = k]} \\
&= \frac{P[S_{n_2} - S_{n_1} = j - i, S_{n_1} - S_{n_0} = i - k, S_{n_0} = k]}{P[S_{n_1} - S_{n_0} = i - k]P[S_{n_0} = k]} \\
&= \frac{P[S_{n_2} - S_{n_1} = j - i]P[S_{n_1} = i]}{P[S_{n_1} = i]} \\
&= \frac{P[S_{n_2} - S_{n_1} = j - i]}{P[S_{n_1} = i]} = P[S_{n_2} = j|S_{n_1} = i].
\end{align*}
\]

4. Let \(N(t) = \) number of cars passing the intersection in \([0, t]\)
\(\ X(t) = \) number of cars disregarding the stop-sign in \([0, t]\).
Given \(\lambda = 40 \) per hour,

\[
P[N(t) = k] = \frac{(40t)^k}{k!} e^{-40t}, \quad k = 0, 1, 2, \ldots
\]

Set the reference time point at 12:00, ie.,

\[
P[\text{at least 1 car disregarding the stop-sign between 12:00 and 13:00}] = P[X(1) \geq 1]
\]

Let \(p = \) probability that a car will disregard the stop-sign = 0.8%.

Note that \(\{X(t)|N(t) = k\} \) has a binomial distribution with parameters \(k \) and \(p \), that is,

\[
P[X(t) = i|N(t) = k] = C_k^i p^i (1 - p)^{k-i}.
\]

By the rule of total probabilities, we have

\[
P[X(t) = i] = \sum_{k=0}^{\infty} P[X(t) = i|N(t) = k]P[N(t) = k]
\]

\[
= \sum_{k=0}^{\infty} C_k^i p^i (1 - p)^{k-i} \frac{(40t)^k}{k!} e^{-40t}
\]

\[
P[X(1) = 0] = \sum_{k=0}^{\infty} C_k^0 p^0 (1 - p)^k \frac{40^k}{4!} e^{-40}
\]

\[3\]
5. (a) Note that $N(t) = N_1(t) + N_2(t)$, we have
\[
\{N_1(t) = j, N_2(t) = k | N(t) = k + j\}
\Leftrightarrow \{N_1(t) = j | N(t) = k + j\}.
\]
This is because
\[
\{N_1(t) = j, N_2(t) = k | N(t) = k + j\}
\Leftrightarrow \{N_1(t) = j, N(t) - N_1(t) = k | N(t) = k + j\}
\Leftrightarrow \{N_1(t) = j, N_1(t) = N(t) - k | N(t) = k + j\}
\Leftrightarrow \{N_1(t) = j, N(t) = k + j - k | N(t) = k + j\}
\Leftrightarrow \{N_1(t) = j, N_1(t) = j | N(t) = k + j\}
\Leftrightarrow \{N_1(t) = j | N(t) = k + j\}.
\]
Since p is the probability of a head showing up and $N_1(t)$ is the number of heads recorded up to time t, $\{N_1(t) | N(t) = k + j\}$ has a binomial distribution with parameters $k + j$ and p, we have
\[
P[N_1(t) = j, N_2(t) = k | N(t) = k + j]
= P[N_1(t) = j | N(t) = k + j]
= C_{k+j}^{j} p^j (1-p)^{k}.
\]
(b) Note that for an integer $n \neq k + j$,
\[
P[N_1(t) = j, N_2(t) = k | N(t) = n]
= P[N_1(t) = j, N_2(t) = k | N_1(t) + N_2(t) = n]
= P[n] = 0.
\]
By the rule of total probabilities, we obtain
\[
P[N_1(t) = j, N_2(t) = k]
= \sum_{n=0}^{\infty} P[N_1(t) = j, N_2(t) = k | N(t) = n] P[N(t) = n]
= P[N_1(t) = j, N_2(t) = k | N(t) = k + j] P[N(t) = k + j]
+ \sum_{n \neq k+j}^{\infty} P[N_1(t) = j, N_2(t) = k | N(t) = n] P[N(t) = n]
= P[N_1(t) = j, N_2(t) = k | N(t) = k + j]
= C_{k+j}^{j} p^j (1-p)^{k} \cdot \frac{(\lambda t)^{k+j}}{(k+j)!} e^{-\lambda t}
= \frac{(k + j)!}{j! k!} p^j (1-p)^{k} \cdot \frac{(\lambda t)^{k+j}}{(k+j)!} e^{-\lambda t[p+(1-p)]}
= \frac{(p\lambda)^j}{j!} e^{-\lambda t} \frac{[(1-p)\lambda t]^k}{k!} e^{-(1-p)\lambda t}.
\]
We then have

\[P[N_1(t) = j] = \sum_{k=0}^{\infty} P[N_1(t) = j, N_2(t) = k] \]
\[= \sum_{k=0}^{\infty} \frac{(p\lambda t)^j}{j!} e^{-p\lambda t} \frac{[(1-p)\lambda t]^k}{k!} e^{-(1-p)\lambda t} \]
\[= \frac{(p\lambda t)^j}{j!} e^{-p\lambda t} \sum_{k=0}^{\infty} \frac{[(1-p)\lambda t]^k}{k!} \]
\[= \frac{(p\lambda t)^j}{j!} e^{-p\lambda t} \cdot e^{-(1-p)\lambda t} \cdot e^{(1-p)\lambda t} \]
\[= \frac{(p\lambda t)^j}{j!} e^{-p\lambda t} \]

which indicates that \(N_1(t) \) is a Poisson random variable with rate \(p\lambda \). Similarly, we can obtain

\[P[N_2(t) = k] = \frac{[(1-p)\lambda t]^k}{k!} e^{-(1-p)\lambda t} \]

and so \(N_2(t) \) is a Poisson random variable with rate \((1-p)\lambda \). Finally, from equations (1), (2) and (3), we can see that

\[P[N_1(t) = j, N_2(t) = k] = P[N_1(t) = j]P[N_2(t) = k]. \]

Hence, \(N_1(t) \) and \(N_2(t) \) are independent.

6. Let \(N(t) \) be the number of soft drinks dispensed up to time \(t \), and \(X(t) \) be the number of customer arrivals up to time \(t \).

\[P[N(t) = k] = \sum_{n=k}^{\infty} P[N(t) = k|X(t) = n]P[X(t) = n] \]
\[= \sum_{n=k}^{\infty} e^{\lambda t} p^k (1-p)^{n-k} \left[\frac{e^{-\lambda t}(\lambda t)^n}{n!} \right] \]
\[= \sum_{n=k}^{\infty} e^{\lambda t} \cdot \frac{\lambda^m (\lambda t)^m}{(m+k)!} \quad \text{set } n = m + k \]
\[= e^{-\lambda t} \sum_{m=0}^{\infty} \frac{[\lambda t(1-p)]^m}{m!} \frac{(\lambda pt)^k}{k!} \]
\[= e^{-\lambda t} e^{\lambda t(1-p)} \frac{(\lambda pt)^k}{k!} = e^{-\lambda pt} \frac{(\lambda pt)^k}{k!}, \quad k = 0, 1, 2, \ldots. \]

7. (a) We need to show that

“\(Y(t) \) is a random telegraph signal” \((*)\)

If (*) holds, together with the fact that the random telegraph signal is equally likely to be \(\pm 1 \) at any time \(t > 0 \), we have

\[P[Y(t) = \pm 1] = \frac{1}{2}. \]
The proof of (*) goes below.
Assume $X(0)$ and $Y(0)$ have the same distribution. Let $N_X(t)$ be the Poisson process of rate α such that $N_X(t)$ is corresponding to the random telegraph signal $X(t)$.
Consider $N_Y(t)$ = number of times that $Y(t)$ has changed the polarity over $[0, t]$.
Then (*) holds if and only if $N_Y(t)$ is a Poisson random process.
Since $Y(t)$ changes the polarity with probability p if $X(t)$ changes polarity, the conditional random process $\{N_Y(t)|N_X(t) = n\}$ is a binomial random variable with parameters n and p, i.e.,
\[
P[N_Y(t) = k|N_X(t) = n] = \binom{n}{k} p^k (1-p)^n - k, \quad n = 0, 1, 2, \ldots; k = 0, 1, \ldots, n.
\]
where $N_X(t)$ = number of times that $X(t)$ has changed the polarity over $[0, t]$.
In general, for $0 \leq t_1 < t_2 < \infty$, we have
\[
P[N_Y(t_2) - N_Y(t_1) = k|N_X(t_2) - N_X(t_1) = n] = \binom{n}{k} p^k (1-p)^{n-k}, \quad n = 0, 1, 2, \ldots; k = 0, 1, \ldots, n.
\]
By the rule of total probabilities, we have
\[
P[N_Y(t) = k] = \sum_{n=0}^{\infty} P[N_Y(t) = k|N_X(t) = n]P[N_X(t) = n]
\]
\[= \sum_{n=0}^{k-1} P[N_Y(t) = k|N_X(t) = n]P[N_X(t) = n]
\]
\[+ \sum_{n=k}^{\infty} P[N_Y(t) = k|N_X(t) = n]P[N_X(t) = n]
\]
\[= \sum_{n=k}^{\infty} \binom{n}{k} p^k (1-p)^{n-k} \frac{(\alpha t)^n}{n!} e^{-\alpha t}
\]
\[= \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \frac{(\alpha t)^n}{n!} e^{-\alpha t}
\]
\[= \frac{(\text{pata})^k}{k!} e^{-\alpha t} \sum_{n=k}^{\infty} \frac{[(1-p)\alpha t]^{n-k}}{(n-k)!}
\]
\[= \frac{(\text{pata})^k}{k!} e^{-\alpha t} \sum_{m=0}^{\infty} \frac{[(1-p)\alpha t]^{m}}{m!} \quad \text{by } m = n - k
\]
\[= \frac{(\text{pata})^k}{k!} e^{-\alpha t} e^{(1-p)\alpha t}
\]
\[= \frac{(\text{pata})^k}{k!} e^{-\alpha t}
\]
which indicates that $N_Y(t)$ is a Poisson random variable with parameter $p\alpha$. Thus $\{N_Y(t), t \geq 0\}$ is a Poisson random process.
(b) Recall that $C_X(t_1, t_2) = e^{-2\alpha|t_2-t_1|}$.
For $t_1 < t_2$,
\[
C_Y(t_1, t_2) = E[Y(t_1)Y(t_2)] - E[Y(t_1)]E[Y(t_2)].
\]
Now,
\[E[Y(t)] = (1)P[Y(t) = 1] + (-1)P[Y(t) = -1] \]
\[= (1) \left(\frac{1}{2} \right) + (-1) \left(\frac{1}{2} \right) \]
\[= 0 \]

so

\[C_Y(t_1, t_2) = E[Y(t_1)Y(t_2)] - E[Y(t_1)]E[Y(t_2)] \]
\[= (1)P[Y(t_1)Y(t_2) = 1] + (-1)P[Y(t_1)Y(t_2) = -1] \]
\[= P[Y(t_1) = Y(t_2)] - P[Y(t_1) \neq Y(t_2)] \]
\[= P[N_Y(t_2) - N_Y(t_1) = \text{even number}] \]
\[- P[N_Y(t_2) - N_Y(t_1) = \text{odd number}] \]
\[= P[N_Y(t_2 - t_1) = \text{even number}] - P[N_Y(t_2 - t_1) = \text{odd number}] \]
\[= \sum_{k=0}^{\infty} P[N_Y(t_2 - t_1) = 2k] - \sum_{k=0}^{\infty} P[N_Y(t_2 - t_1) = 2k + 1] \]
\[= e^{-p_0(t_2-t_1)} \left\{ \sum_{k=0}^{\infty} \frac{p_0(t_2-t_1)^{2k}}{(2k)!} - \sum_{k=0}^{\infty} \frac{p_0(t_2-t_1)^{2k+1}}{(2k+1)!} \right\} \]
\[= e^{-p_0(t_2-t_1)} \left\{ \frac{1}{2} \left[e^{p_0(t_2-t_1)} + e^{-p_0(t_2-t_1)} \right] \right\} \]
\[= e^{-2p_0(t_2-t_1)}. \]

Similarly,

\[C_Y(t_1, t_2) = e^{-2p_0(t_1-t_2)} \text{ for } t_1 > t_2. \]

Hence, in general for any \(t_1, t_2, \)
\[C_Y(t_1, t_2) = e^{-2p_0|t_2-t_1|} = [C_X(t_1, t_2)]^p. \]

8. (a) Given \(S = \{0, 1, 2\}. \)

\[P[X_{n+1} = j|X_n = i, X_{n-1} = x_{n-1}, \ldots, X_0 = x_0] \]
\[= P[\text{There are } (j - i) \text{ more working parts on } (n + 1)\text{th day than those on } n\text{th day}|X_n = i] \]
\[= P[X_{n+1} = j|X_n = i] \]

so \(X_n \) is a three-state Markov Chain. Note that

\[
\begin{align*}
p_{00} &= P[X_{n+1} = 0|X_n = 0] = (1 - b)^2 \\
p_{01} &= P[X_{n+1} = 1|X_n = 0] = 2b(1 - b) \\
p_{02} &= P[X_{n+1} = 2|X_n = 0] = b^2 \\
p_{10} &= P[X_{n+1} = 0|X_n = 1] = a(1 - b) \\
p_{11} &= P[X_{n+1} = 1|X_n = 1] = ab + (1 - a)(1 - b) \\
p_{12} &= P[X_{n+1} = 2|X_n = 1] = (1 - a)b \\
p_{20} &= P[X_{n+1} = 0|X_n = 2] = a^2 \\
p_{21} &= P[X_{n+1} = 1|X_n = 2] = 2a(1 - a) \\
p_{22} &= P[X_{n+1} = 2|X_n = 2] = (1 - a)^2
\end{align*}
\]
Hence, the one-step transition probability matrix is
\[
P = \begin{bmatrix}
(1 - b)^2 & 2b(1 - b) & b^2 \\
\alpha(1 - b) & \alpha b + (1 - \alpha)(1 - b) & (1 - \alpha)b \\
\alpha^2 & 2\alpha(1 - \alpha) & (1 - \alpha)^2
\end{bmatrix}.
\]

(b) Let \(\mathbf{\pi} = [\pi_{\infty,0} \, \pi_{\infty,1} \, \pi_{\infty,2}] = [p_1 \, p_2 \, p_3] \) be the steady state pmf.
\[
\mathbf{\pi} = \mathbf{\pi} P \Rightarrow [p_1 \, p_2 \, p_3] = [p_1 \, p_2 \, p_3] P
\]

Expanding into individual components, we obtain
\[
p_1 = (1 - b)^2 p_1 + \alpha(1 - b)p_2 + \alpha^2 p_3
\]
\[
p_2 = 2b(1 - b)p_1 + [\alpha b + (1 - \alpha)(1 - b)]p_2 + 2\alpha(1 - \alpha)p_3
\]
\[
p_3 = b^2 p_1 + (1 - \alpha)b p_2 + (1 - \alpha)^2 p_3
\]

We drop the second equation and observe that the sum of probabilities equals one. Hence, we obtain
\[
-a^2 p_3 = (b^2 - 2b)p_1 + \alpha(1 - b)p_2 \\
-b^2 p_1 = (a^2 - 2a)p_3 + (1 - \alpha)p_2 \\
p_1 + p_2 + p_3 = 1
\]

From Eqs (i) and (ii), we have
\[
-b^2 p_1 = b(1 - a)p_2 - \frac{a^2 - 2a}{a^2} [(b^2 - 2b)p_1 + \alpha(1 - b)p_2] \\
ab p_1 + \alpha b(1 - a)p_2 + (2 - a)(b^2 - 2b)p_1 + \alpha(1 - b)p_2 = 0 \\
2(b^2 - ab - 2b)p_1 = (a^2 + ab - 2a)p_2
\]
\[
p_1 = \frac{ab}{2b} p_2.
\]

From Eq. (ii):
\[
\frac{ab}{2} p_2 = (a^2 - 2a)p_3 + b(1 - a)p_2 \Rightarrow p_3 = \frac{b}{2a} p_2.
\]

From Eq. (iii):
\[
\frac{a}{2b} p_2 + p_2 + \frac{b}{2a} p_2 = 1 \Rightarrow p_2 = \frac{2ab}{(a + b)^2}
\]
\[
\text{so} \quad p_1 = \frac{a^2}{(a + b)^2}, \quad p_3 = \frac{b^2}{(a + b)^2}.
\]

Hence, the general form of steady state pmf is given by
\[
\pi_{\infty,i} = C_i^2 \left(\frac{a}{a + b} \right)^i \left(1 - \frac{b}{a + b} \right)^{2-i}, \quad i = 0, 1, 2.
\]

Therefore, the entries of \(\mathbf{\pi} \) are binomial coefficients with parameter \(p = \frac{b}{a + b} \).

(c) For a machine that consists of \(n \) parts, the steady state pmf should still be binomial with parameters \(n \) and \(p = \frac{b}{a + b} \).