
3. Exponential and trigonometric functions

From the first principles, we define the complex exponential func-

tion as a complex function f(z) that satisfies the following defining

properties:

1. f(z) is entire,

2. f ′(z) = f(z),

3. f(x) = ex, x is real.

Let f(z) = u(x, y) + iv(x, y), z = x + iy. From property (1), u and

v satisfy the Cauchy-Riemann relations. Combining (1) and (2)

ux + ivx = vy − iuy = u + iv.

First, we observe that ux = u and vx = v and so

u = exg(y) and v = exh(y),

where g(y) and h(y) are arbitrary functions in y.
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We also have

vy = u and uy = −v,

from which we deduce that the arbitrary functions are related by

h′(y) = g(y) and − g′(y) = h(y).

By eliminating g(y) in the above relations, we obtain

h′′(y) = −h(y).

The general solution of the above equation is given by

h(y) = A cos y + B sin y,

where A and B are arbitrary constants. Furthermore, using g(y) =

h′(y), we have

g(y) = −A sin y + B cos y.
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To determine the arbitrary constants A and B, we use property (3)

where

ex = u(x,0) + iv(x,0) = g(0)ex + ih(0)ex = Bex + iAex.

We then obtain B = 1 and A = 0. Putting all the results together,

the complex exponential function is found to be

f(z) = ez = ex cos y + iex sin y,

By setting x = 0, we then deduce the Euler formula:

eiy = cos y + i sin y.

It can be verified that

ez1+z2 = ez1ez2,

another basic property of the exponential function.
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The modulus of ez is non-zero since

|ez| = ex 6= 0, for all z in C,

and so ez 6= 0 for all z in the complex z-plane. The range of the

complex exponential function is the entire complex plane except the

zero value.

Periodic property

ez+2kπi = ez, for any z and integer k,

that is, ez is periodic with the fundamental period 2πi. The complex

exponential function is periodic while its real counterpart is not.
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Mapping properties of the complex exponential function

Since the complex exponential function is periodic with fundamental

period 2πi, it is a many-to-one function. If we restrict z to lie within

the infinite strip −π < Im z ≤ π, then the mapping w = ez becomes

one-to-one.

The vertical line x = α is mapped onto the circle |w| = eα, while the

horizontal line y = β is mapped onto the ray Arg w = β.

When the vertical line x = α moves further to the left, the mapped

circle |w| = eα shrinks to a smaller radius. When the horizontal line

in the z-plane moves vertically from y = −π to y = π, the image ray

in the w-plane traverses in anticlockwise sense from Arg w = −π to

Arg w = π.
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In particular, the whole x-axis is mapped onto the positive u-axis,

and the portion of the y-axis, −π < y ≤ π, is mapped onto the unit

circle |w| = 1.
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Example

Consider the following function:

f(z) = e
α
z , α is real.

Show that |f(z)| is constant on the circle x2 + y2 − ax = 0, a is a

real constant.

Solution

Write the equation of the circle as

(
x − a

2

)2
+ y2 =

(
a

2

)2

which reveals that the circle is centered at
(

a
2,0

)
and has radius a

2.

A possible parametric representation of the circle is

x =
a

2
(1 + cos θ) and y =

a

2
sin θ, −π < θ ≤ π.
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The parameter θ is the angle between the positive x-axis and the

line joining the center
(

a
2,0

)
to the point (x, y). The complex rep-

resentation of the circle can be expressed as

z =
a

2
(1 + eiθ), −π < θ ≤ π.

The modulus of f(z) when z lies on the circle is found to be

|f(z)| =
∣∣∣∣∣e

2α
a(1+eiθ)

∣∣∣∣∣ =
∣∣∣∣∣e

2α
a

1+cos θ−i sin θ
2(1+cos θ)

∣∣∣∣∣ = e
α
a .

The modulus value is equal to a constant with no dependence on

θ, that is, independent of the choice of the point on the circle.
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Trigonometric and hyperbolic functions

Using the Euler formula eiy = cos y + i sin y, the real sine and cosine

functions can be expressed in terms of eiy and e−iy as follows:

sin y =
eiy − e−iy

2i
and cos y =

eiy + e−iy

2
.

We define the complex sine and cosine functions in the same manner

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
.

The other complex trigonometric functions are defined in terms of

the complex sine and cosine functions by the usual formulas:

tan z =
sin z

cos z
, cot z =

cos z

sin z
, sec z =

1

cos z
, csc z =

1

sin z
.
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Let z = x + iy, then

eiz = e−y(cos x + i sin x) and e−iz = ey(cos x − i sinx).

The complex sine and cosine functions are seen to be

sin z = sinx cosh y + i cos x sinh y,

cos z = cosx cosh y − i sinx sinh y.

Moreover, their moduli are found to be

| sin z| =
√

sin2 x + sinh2 y, | cos z| =
√

cos2 x + sinh2 y.

Since sinh y is unbounded at large values of y, the above modulus

values can increase (as y does) without bound.

While the real sine and cosine functions are always bounded between

−1 and 1, their complex counterparts are unbounded.
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The complex hyperbolic functions are defined by

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
, tanh z =

sinh z

cosh z
.

The other hyperbolic functions cosech z, sech z and coth z are

defined as the reciprocal of sinh z, cosh z and tanh z, respectively.

In fact, the hyperbolic functions are closely related to the trigono-

metric functions. Suppose z is replaced by iz, we obtain

sinh iz = i sin z.

Similarly, one can show that

sin iz = i sinh z, cosh iz = cos z, cos iz = cosh z.
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The real and imaginary parts of sinh z and cosh z are found to be

sinh z = sinh x cos y + i coshx sin y,

cosh z = cosh x cos y + i sinh x sin y,

and their moduli are given by

| sinh z| =

√
sinh2 x + sin2 y,

| cosh z| =

√
cosh2 x − sin2 y.

The complex hyperbolic functions sinh z and cosh z are periodic with

fundamental period 2πi; and tanh z is periodic with fundamental

period πi.
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A zero α of a function f(z) satisfies f(α) = 0. To find the zeros of

sinh z, we observe that

sinh z = 0 ⇔ | sinh z| = 0 ⇔ sinh2x + sin2y = 0.

Hence, x and y must satisfy sinh x = 0 and sin y = 0, thus giving

x = 0 and y = kπ, k is any integer.

The zeros of sinh z are z = kπi, k is any integer.
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Mapping properties of the complex sine function

Consider the complex sine function

w = sin z = sin x cosh y + i cos x sinh y, z = x + iy,

suppose we write w = u + iv, then

u = sin x cosh y and v = cosx sinh y.

We find the images of the coordinates lines x = α and y = β. When

x = α, u = sinα cosh y and v = cosα sinh y. By eliminating y in the

above equations, we obtain

u2

sin2 α
− v2

cos2 α
= 1,

which represents a hyperbola in the w-plane.
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a > 0

Vertical lines are mapped onto hyperbolas under w = sin z.
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Take α > 0. When 0 < α < π
2, u = sinα cosh y > 0 for all values of

y, so the line x = α is mapped onto the right-hand branch of the

hyperbola. Likewise, the line x = −α is mapped onto the left-hand

branch of the same hyperbola.

In particular, when α = π
2, the line x = π

2 is mapped onto the line

segment v = 0, u ≥ 1 (degenerate hyperbola). Also, the y-axis is

mapped onto the v-axis.

We conclude that the infinite strip

{
0 ≤ Re z ≤ π

2

}
is mapped to

the right half-plane {u ≥ 0}. By symmetry, the other infinite strip{
−π

2
≤ Re z ≤ 0

}
is mapped to the left half-plane {u ≤ 0}.
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Consider the image of a horizontal line y = β (β > 0), −π

2
≤ x ≤ π

2
under the mapping w = sin z.

When y = β, u = sin x cosh β and v = cosx sinh β. By eliminating x

in the above equations, we obtain

u2

cosh2 β
+

v2

sinh2 β
= 1,

which represents an ellipse in the w-plane.

• The upper line y = β (the lower line y = −β) is mapped onto

the upper (lower) portion of the ellipse.

• When β = 0, the line segment y = 0,−π

2
≤ x ≤ π

2
is mapped

onto the line segment v = 0,−1 ≤ u ≤ 1, which is a degenerate

ellipse.
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Horizontal lines are mapped onto ellipses under w = sin z.
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Example

(a) Find the general solution for ez = 1 + i. Is |ez| bounded when

Re (z) = β?

(b) Show that | sin z| is bounded when Im(z) = α.

Solution

(a) ez = ex(cos y + i sin y) = 1 + i, z = x + iy.

ex = |1 + i| =
√

2 so that x =
1

2
ln 2; tan y = 1 so that y =

π

4
+ 2kπ, k is integer.

|ez| = ex = eβ so that |ez| is bounded when Re z = β.

(b) | sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y = sin2 x + sinh2 y. When

Im z = α, | sin(x + iα)|2 = sin2 x + sinh2 α ≤ 1 + sinh2 α. Hence,

| sin z| ≤
√

1 + sinh2 α when Im z = α.
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Reflection principle

Suppose a function f is analytic in a domain D which includes part of

the real axis and D is symmetric about the real axis. The reflection

principle states that

f(z) = f(z) if and only if f(z) is real when z is real.
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An example is the cosine function: f(z) = cos z.

The domain of analyticity is the whole complex plane and it reduces

to the real cosine function when z is real.

As a verification, consider

eiz = ei(x+iy) = e−yeix = e−ye−ix = e−i(x−iy) = e−iz.

Also e−iz = eiz. Now

cos z =
1

2
(eiz + e−iz) =

1

2
(e−iz + eiz) = cos z.
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Proof of the reflection principle

“=⇒ part”

Write f(z) = u(x, y) + iv(x, y), z = x + iy, then

f(z) = u(x,−y) − iv(x,−y)

which is well defined ∀z ∈ D since D is symmetric with respect to

the real axis.

f(z) = f(z) =⇒ u(x,−y)− iv(x,−y) = u(x, y) + iv(x, y)

Hence, u is even in y and v is odd in y. Obviously v(x,0) = 0 so

that f(z) is real when z is real.
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“⇐= part”

Given that f(z) assumes real value on a line segment of the real

axis within D, f(z) and f(z) have the same value along the segment

of real axis.

To prove f(z) = f(z), it suffices to show that f(z) is analytic in D.

[See Theorem 5.5.1 on p. 210. Given that f1(z) and f2(z) are

analytic in D, if f1(z) = f2(z) on an arc inside D, then f1(z) = f2(z)

throughout D.]
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Note that u and v have continuous first order partials in D and

∂u

∂x
(x, y) =

∂v

∂y
(x, y) and

∂u

∂y
(x, y) = −∂v

∂x
(x, y).

Let ỹ = −y, we deduce that

∂u

∂x
(x, ỹ) =

∂(−v)

∂ỹ
(x, ỹ) and

∂u

∂ỹ
(x, ỹ) = −∂(−v)

∂x
(x, ỹ),

which are the Cauchy-Riemann relations for f(z). Hence, f(z) is

analytic in D.
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Logarithmic functions

The complex logarithmic function is defined as the inverse of the

complex exponential function. For

w = log z,

this would imply

z = ew.

Let u(x, y) and v(x, y) denote the real and imaginary parts of log z,

then

z = x + iy = eu+iv = eu cos v + ieu sin v.

Equating the real and imaginary parts on both sides gives

x = eu cos v and y = eu sin v.
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It then follows that

e2u = x2 + y2 = |z|2 = r2 and v = tan−1 y

x
.

Using the polar form z = reiθ, we deduce that

u = ln r = ln |z|, r 6= 0 and v = θ = arg z.

Putting the results together, we have

w = log z = ln |z| + iarg z, z 6= 0,∞.

Remark ‘ln’ refers to the real logarithm while ‘log’ refers to the

complex logarithm.
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Recall that arg z is multi-valued, so does log z. For a fixed z, there

are infinitely many possible values of log z, each differing by a mul-

tiple of 2πi.

The principal branch of the complex logarithmic function is denoted

by Log z, that is,

Log z = ln |z| + iArg z, −π < Arg z ≤ π.

One may write

log z = Log z + 2kπi, k is any integer.

For example, Log i = πi/2 and log i = πi/2 + 2kπi, k is any integer.
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Though z = elog z, it would be incorrect to write z = log ez since the

logarithmic function is multi-valued.

Given two non-zero complex numbers z1 and z2, we have

ln |z1z2| = ln |z1| + ln |z2|,
arg(z1z2) = arg z1 + arg z2,

so

log(z1z2) = log z1 + log z2.

The equality sign actually means that any value of log(z1z2) equals

some value of log z1 plus some value of log z2.
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Example

Show from the first principles that

d

dz
log z =

1

z
, z 6= 0, ∞.

Solution

Suppose we perform differentiation along the x-axis, the derivative

of log z becomes

d

dz
log z =

∂

∂x
ln r + i

∂

∂x
(θ + 2kπ), z 6= 0,∞,

where r =
√

x2 + y2, θ = tan−1 y
x and k is any integer.

d

dz
log z =

1

r

∂r

∂x
+ i

∂θ

∂x

=
1

√
x2 + y2

x
√

x2 + y2
+ i

−y

x2 + y2

=
x − iy

x2 + y2
=

z

zz
=

1

z
.
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Example

Find the solutions of z1+i = 4.

Solution

We write this equation as

e(1+i) log z = 4

so that (1 + i) log z = ln4 + 2nπi, n = 0,±1, · · · . Hence,

log z = (1 − i)(ln 2 + nπi)

= (ln 2 + nπ) + i(nπ − ln 2).

Thus,

z = 2enπ[cos(nπ − ln 2) + i sin(nπ − ln 2)]

= 2enπ[(−1)n cos(ln 2) + i(−1)n+1 sin(ln 2)]

= (−1)n2enπ[cos(ln 2) − i sin(ln 2)], n = 0,±1, · · · .
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Inverse trigonometric and hyperbolic functions

We consider the inverse sine function

w = sin−1 z,

or equivalently,

z = sinw =
eiw − e−iw

2i
.

Considered as a quadratic equation in eiw

e2iw − 2izeiw − 1 = 0.

Solving the quadratic equation gives

eiw = iz + (1 − z2)
1
2.

Taking the logarithm on both sides of the above equation

sin−1 z =
1

i
log

(
iz + (1 − z2)

1
2

)
.
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When z 6= ±1, the quantity (1 − z2)
1
2 has two possible values. For

each value, the logarithm generates infinitely many values. There-

fore, sin−1 z has two sets of infinite values. For example, consider

sin−1 1

2
=

1

i
log

(
i

2
±

√
3

2

)

=
1

i

[
ln 1 + i

(
π

6
+ 2kπ

)]

or
1

i

[
ln 1 + i

(
5π

6
+ 2kπ

)]

=
π

6
+ 2kπ or

5π

6
+ 2kπ, k is any integer.
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Example

If θ is real and non-zero and sin θ sinφ = 1, then

φ =

(
n +

1

2

)
π ± i ln

∣∣∣∣∣tan
θ

2

∣∣∣∣∣,

where n is an integer, even or odd, according to sin θ > 0 or sin θ < 0.

How to solve sinφ = 2 using the above result? Let sin θ =
1

2
so that

θ =
π

6
, then using the results

φ =

(
n +

1

2

)
π ± i ln

∣∣∣∣∣tan
π

12

∣∣∣∣∣,

where n is even since sin θ > 0.

Instead, if we solve for sinφ = −2, then we have the same represen-

tation of the solution, except that n is taken to be odd.
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In a similar manner, we can derive the following formulas for the

other inverse trigonometric and hyperbolic functions:

cos−1 z =
1

i
log(z + (z2 − 1)

1
2),

tan−1 z =
1

2i
log

1 + iz

1 − iz
, cot−1 z =

1

2i
log

z + i

z − i
,

sinh−1 z = log(z + (1 + z2)
1
2), cosh−1 z = log(z + (z2 − 1)

1
2),

tanh−1 z =
1

2
log

1 + z

1 − z
, coth−1 z =

1

2
log

z + 1

z − 1
, etc.

The derivative formulas for the inverse trigonometric functions are

d

dz
sin−1 z =

1

(1 − z2)
1
2

,
d

dz
cos−1 z = − 1

(1 − z2)
1
2

,

d

dz
tan−1 z =

1

1 + z2
, and so forth.
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Example

Consider the inverse tangent function, which is multi-valued:

w = tan−1 z ⇒ z =
e2iw − 1

i(e2iw + 1)
⇒ e2iw =

1 + iz

1 − iz

⇒ w =
1

2i
log

(
1 + iz

1 − iz

)
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Consider the generalized power function

f(z) = za,

where a is complex in general, and z = x+iy = reiθ = |z|ei(Arg z + 2kπ)

is a complex variable. Consider the following cases:

(i) When a = n, n is an integer,

zn = |z|n einArg z.

(ii) When a is rational, a = m
n where m, n are irreducible integers,

we have

z
m
n = e

m
n log z

= e
m
n ln |z| eim

n Arg z e2km
n πi, k = 0,±1,±2, . . . .
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The factor e2km
n πi takes on n different values for k = 0,1,2, . . . , n−

1, but repeats itself with period n if k continues to increase

through the integer. The power function has n different branches,

corresponding to different values of k.

(iii) When a = α + iβ, then

za = e(α + iβ) [ln |z| + i(Arg z + 2kπ)]

= eα ln |z|−β(Arg z + 2kπ) ei[β ln |z| + α(Arg z + 2kπ)]

= |z|αe−β(Arg z + 2kπ)[cos(β ln |z| + α(Arg z + 2kπ))

+ i sin(β ln |z| + α(Arg z + 2kπ))],

k = 0,±1,±2, . . . .

In this case, za has infinitely many branches.
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Example

Find the principal value of each of the following complex quantities:

(a) (1 − i)1+i; (b) 33−i; (c) 22i.

Solution

(a) Principal value of (1− i)1+i = e(1+i)Log(1−i) = e(1+i)(ln
√

2−π
4i)

= e
(
ln

√
2+π

4

)
+i
(
ln

√
2−π

4

)

=
√

2e
π
4

[
cos

(
ln

√
2 − π

4

)
+ i sin

(
ln

√
2 − π

4

)]
.

(b) Principal value of 33−i = e(3−i)Log 3 = e3 ln 3−i ln 3

= 27 [cos(ln 3) − i sin(ln 3)].

(c) Principal value of 22i = e2i ln 2 = cos(ln 4) + i sin(ln 4).
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Branch points, branch cuts and Riemann surfaces

Why do we need to construct the Riemann surface consisting of

overlapping sheets to characterize a multi-valued function?

A multi-valued function may be regarded as single-valued if we suit-

ably generalize its domain of definition.

Consider the double-valued function

w = f(z) = z1/2.

There are two possible roots, each root corresponds to a specific

branch of the double-valued function. Multi-valued nature stems

from the different possible values that can be assumed by arg z.
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z1-plane (z2-plane) is the domain of definition of the first branch

(second branch) of the double-valued function w = z1/2.
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In general, suppose z = rei arg z, then z1/2 =
√

reiarg z/2. The two

roots correspond to the choice of arg z which lies in the z1-plane

(−π < arg z ≤ π) or z2-plane (π < arg z ≤ 3π). The two image points

lie in different branches of the double-valued function w = z1/2.

For w = z1/2, we take the two copies of the z-plane superimposed

upon each other.

Each square root corresponds to a specific branch of the multi-

valued function, w = f(z) = z1/2. For each branch of the multi-

valued function, this becomes a one-to-one function.

For w = f(z) = z1/2

f(i) =

{
ei(π/2)/2 = eiπ/4 in the first branch

ei(5π/2)/2 = ei5π/4 = −eiπ/4 in the second branch
.
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The z1-plane and z2-plane are joined together along the negative

real axis from z = 0 to z = ∞. The two ends z = 0 and z = ∞ are

called the branch points and the common negative real axis of z1-

and z2-planes are called the branch cut.

When we transverse a complete loop around the origin (branch

point), the loop moves from the z1-plane to z2-plane by crossing

the branch cut. After transversing a closed loop, arg z increases by

2π.
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• A Riemann surface consists of overlapping sheets and these

sheets are connected by the branch cuts. Each sheet corre-

sponds to the domain of definition of an individual branch of

the multi-valued function. The end points of a branch cut are

called the branch points.

Consider a closed loop in the z-plane which does not encircle the

origin, arg z increases then decreases, and remains the same value

when it moves back to the same point. The closed loop stays on

the same branch.
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However, if the closed loop encircles the origin, then arg z increases

by an amount 2π when we move in one complete loop and go back

to the same point.

• A complete loop around a branch point carries a branch of a

given multi-valued function into another branch.
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Example

For w = g(z) = z1/4, there are 4 branches corresponding to the 4

roots of z. Suppose we take the branch where

g(i) = ei(π/2+4π)/4 = −eiπ/8,

find g(1 + i).

In this branch, we take 3π < arg z ≤ 5π. Hence, 1+i =
√

2ei(π/4+4π)

so that

g(1 + i) =
8
√

2ei(π
4+4π)/4 = − 8

√
2ei π

16.

What are the other 3 values of g(1 + i)?
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Example

For f(z) = (z − 1)1/3, let a branch cut be constructed along the

line y = 0, x ≥ 1. If we select a branch whose value is a negative

real number when y = 0, x < 1, what value does this branch assume

when z = 1 + i.
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Solution

Let r1 = |z − 1| and θ1 = arg(z − 1), where 0 ≤ θ1 < 2π, then

(z − 1)1/3 = 3
√

r1ei(θ1/3+2kπ/3), k = 0,1,2.

Taking θ1 = π on the line y = 0, x < 1, we have

(z − 1)1/3 = 3
√

r1ei(π/3+2kπ/3),

which is a negative real number if we select k = 1. On this branch,

when z = 1 + i, we have θ1 = π/2 and r1 = 1. Hence,

f(1 + i) =
3
√

1ei5π/6 = −
√

3

2
+

i

2
.
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Example

We examine the branch points and branch cut of

w = (z2 + 1)1/2 = [(z + i)(z − i)]1/2.

We write z − i = r1eiθ1, z + i = r2eiθ2 so that

w =
√

r1r2eiθ1/2eiθ2/2.
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Now, θ1 = arg(z − i) and θ2 = arg(z + i). Consider the following 4

closed loops:

xx

x x

<

<

i

�i �i

i

both and remain

the same value

� �
1 2

�

�

�

1

2

remains the same

value but increases

2

y y

xx
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x

x

<

-i

i

q p

q

1

2
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value
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i

both and
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1 2

y

x

y
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case 1: w =
√

r1r2eiθ1/2eiθ2/2

case 2: w =
√

r1r2eiθ1/2ei(θ2+2π)/2 = −√
r1r2eiθ1/2eiθ2/2

case 3: w =
√

r1r2ei(θ1+2π)/2eiθ2/2 = −√
r1r2eiθ1/2eiθ2/2

case 4: w =
√

r1r2ei(θ1+2π)/2ei(θ2+2π)/2 =
√

r1r2eiθ1/2eiθ2/2.

In both cases 1 and 4, the value remains the same and there is no

change in branch. For case 4, we expect the closed loop crosses

the branch cut twice or does not cross any branch cut at all.

Both cases 2 and 3 signify a change in branch. We expect that the

closed loop in case 2 or case 3 crosses a branch cut.
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Branch points: z = ±i. The branch cut can be chosen to be either

(i) a cut along the imaginary axis between z = ±i

(ii) two cuts along the imaginary axis, one from i to ∞, the other

from −i to ∞.

If the closed loop encircles none or both the branch points, it goes

back to the same point on the same plane.
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Example

The power function

w = f(z) = [z(z − 1)(z − 2)]1/2

has two branches. Show that f(−1) can be either −
√

6i or
√

6i.

Suppose the branch that corresponds to f(−1) = −
√

6i is chosen,

find the value of the function at z = i.

Solution

The given power function can be expressed as

w = f(z) =
√
|z(z − 1)(z − 2)| ei[Arg z + Arg(z−1) + Arg(z−2)]/2 eikπ, k = 0,1,

where the two possible values of k correspond to the two branches

of the double-valued power function.
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Note that at z = −1,

Arg z = Arg(z−1) = Arg(z−2) = π and
√
|z(z − 1)(z − 2)| =

√
6,

so f(−1) can be either
√

6ei3π/2 = −
√

6i or
√

6ei3π/2eiπ =
√

6i.

The branch that gives f(−1) = −
√

6i corresponds to k = 0. With

the choice of that branch, we have

f(i) =
√
|i(i − 1)(i − 2)| ei[Arg i + Arg(i−1) + Arg(i−2)]/2

=

√√
2
√

5e
i
(

π
2 + 3π

4 + π−tan−1 1
2

)
/2

=
4
√

10eiπe
i
(

π
4−tan−1 1

2

)
/2

= − 4
√

10e
i
(
tan−1 1−tan−1 1

2

)
/2

= − 4
√

10e
i

[
tan−1

(
1−1

2

1+1
2

)]
/2

= − 4
√

10e
i
(
tan−1 1

3

)
/2

.

Note that we have used the idenity: tan−1 x−tan−1 y = tan−1 x − y

1 + xy
.
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Branches of logarithm function

The logarithmic function has infinitely many branches. The branch

points are z = 0 and z = ∞. The principal branch corresponds to

−π < Arg z ≤ π.

All other planes are joined to the adjacent branches along the branch

cuts, which are along the negative real axis from z = 0 to z = ∞.
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Example

Find the largest domain of analyticity of

f(z) = Log(z − (3 + 4i)).

Solution

The function Log w is analytic in the domain consisting of the entire

w-plane minus the semi-infinite line: Im w = 0 and Re w ≤ 0.

For w = z−(3+4i), we ensure analyticity in the z-plane by removing

points that satisfy Im(z − (3 + 4i)) = 0 and Re(z − (3 + 4i)) ≤ 0,

that is, y = 4 and x ≤ 3.
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