1. If \(f(z) = 1/z = u + iv \), construct several members of the families: \(u(x, y) = \alpha, v(x, y) = \beta \) where \(\alpha \) and \(\beta \) are non-zero constants, showing that they are families of circle.

2. For each of the following functions, examine whether the function is continuous at \(z = 0 \):

 (a) \(f(z) = \begin{cases} 0 & z = 0 \\ \Re z & z \neq 0 \end{cases} \)

 (b) \(f(z) = \begin{cases} 0 & z = 0 \\ \frac{\Re z^2}{|z|} & z \neq 0 \end{cases} \)

3. A particle moves along a curve \(z = e^{-t}(2 \sin t + i \cos t) \).

 (a) Find a unit tangent vector to the curve at the point where \(t = \pi/4 \).

 (b) Determine the magnitudes of velocity and acceleration of the particle at \(t = 0 \) and \(\pi/2 \).

4. Consider the function \(f(z) = xy^2 + ix^2y, z = x + iy \). Find the point set where

 (a) the Cauchy-Riemann relations are satisfied;

 (b) the function is differentiable;

 (c) the function is analytic.

5. Let \(f(z) \) be analytic in a domain \(D \). Suppose \(\Re f(z) = [\Im f(z)]^2 \) inside \(D \), show that \(f(z) \) is constant inside \(D \).

6. Find an analytic function \(f(z) \) whose real part \(u(x, y) \) is

 (a) \(u(x, y) = y^3 - 3x^2y, \quad f(i) = 1 + i \);

 (b) \(u(x, y) = \frac{y}{x^2 + y^2}, \quad f(1) = 0 \);

 (c) \(u(x, y) = (x - y)(x^2 + 4xy + y^2) \).

7. Find the orthogonal trajectories of the following families of curves:

 (a) \(x^3y - xy^3 = \alpha \);

 (b) \(2e^{-x} \sin y + x^2 - y^2 = \alpha \);

 (c) \((r^2 + 1) \cos \theta = \alpha r \).

8. Let \(\theta = \angle APB \), which is the angle included between the line segments \(PA \) and \(PA \). Here, \(A \) and \(B \) are the fixed points \((-a, 0) \) and \((a, 0) \), respectively, and \(P \) is the variable point \(z = x + iy \). Show that \(\theta(x, y) \) is a harmonic function. Find the corresponding harmonic conjugate \(v \) such that \(\theta + iv \) is an analytic function.
9. If u and v are harmonic in a region \mathcal{R}, prove that

$$
\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) + i \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)
$$

is analytic in \mathcal{R}.

10. Suppose the isothermal lines of a steady state temperature field are the family of curves

$$
x^2 + y^2 = \alpha, \quad \alpha > 0.
$$

Find the general solution of the temperature function, and the equation of the family of flux lines.