1. Consider the mapping associated with the complex function
\[w = \cos z, \quad z = x + iy, \]
find the image curve of \(x = \alpha, \alpha \) is a constant, under the above mapping in the \(w \)-plane. In particular, examine the special cases where \(\cos \alpha = 0 \) and \(\sin \alpha = 0 \).

Hint: \(\cos z = \cosh y \cos x - i \sinh y \sin x \).

2. Show that, if \(a \) is a positive real constant, then
\[\coth^{-1} \frac{z}{a} = \frac{1}{2} \log \frac{z + a}{z - a} = \frac{1}{2} \left[\ln \left| \frac{z + a}{z - a} \right| + i \arg \left(\frac{z + a}{z - a} \right) \right] \].

Hint: \(\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}, \quad \coth z = \frac{\cosh z}{\sinh z} \).

3. Show that all the values of
\[\left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)^{\sqrt{2}i} \]
lie on a straight line in the complex plane. Find the equation of this line.

4. Consider the multi-valued function: \(f(z) = (z - 1)^{1/3} \).

(a) Describe the Riemann surface of the function. [Specify the branch cut, branch points and the number of sheets.]

(b) Suppose we choose the branch such that \(f(1 + i) = e^{\frac{5\pi}{6}}i \), compute \(f(-1) \).

5. (a) Evaluate
\[\int_{C_1} \cosh z \, dz \]
where \(C_1 \) is the line segment joining \(\log 2 \) and \(i\pi/2 \) in the complex plane.

(b) Estimate an upper bound on
\[\left| \int_{C_2} \frac{1}{\sinh z} \, dz \right| \]
where \(C_2 \) is the line segment joining \(i\pi/4 \) and \(i\pi/2 \) in the complex plane.

Hint: \(\sinh iy = i \sin y \).
6. (a) Evaluate
\[\oint_{x^2+y^2=2x} \frac{\sin \frac{\pi z}{4}}{z^2 - 1} \, dz \]
using Cauchy’s integral formula. \[2\]

(b) Find the maximum value of \[\left| \frac{1}{z+1} \right| \] on and inside the circle: \(x^2 + y^2 = 2x \).

Hint: Use the Maximum Modulus Theorem or other judicious method. \[3\]

7. Let \(f \) be entire and suppose \(\text{Re} f(z) \leq M \) for all \(z \), where \(M \) is a fixed real constant. Prove that \(f \) must be a constant function.

Hint: Apply Liouville’s Theorem to the function \(e^f \). It is necessary to show that \(e^f \) is also entire. \[3\]

8. Let \(f \) be an entire function such that
\[|f(z)| \leq A|z| \] for all \(z \),
where \(A \) is a fixed positive number.

(a) Let \(f^{(n)}(z) \) denote the \(n \)th order derivative of \(f(z) \). Recall Cauchy’s inequality:
\[|f^{(n)}(z_0)| \leq n!M_R \frac{R^n}{R^n}, \quad n = 1, 2, \ldots, \]
where \(M_R \) denotes an upper bound of \(|f(z)|\) on \(C_R : |z - z_0| = R \). Use it to show that
\[|f^{(n)}(z_0)| \leq n!A(R + |z_0|) \frac{R^n}{R^n}, \quad R > 0. \] \[2\]

(b) Hence, show that
\[f(z) = a_1z, \quad \text{where } a_1 \text{ is a complex constant such that } |a_1| \leq A. \]

Hint: Show that \(f^{(n)} \) is zero everywhere in the plane, for \(n \geq 2 \), and \(f(0) = 0. \)

— End —