MATH304, Spring 2007

Solution to Test Two

1. (a) $w=\cos z=\cosh y \cos x-i \sinh y \sin x=u+i v$

$$
\Rightarrow\left\{\begin{array}{l}
u=\cosh y \cos x \\
v=-\sinh y \sin x
\end{array}\right.
$$

Let $x=\alpha,\left\{\begin{array}{l}u=\cosh y \cos \alpha \\ v=-\sinh y \sin \alpha\end{array}\right.$. Eliminating y, we get

$$
\left(\frac{u}{\cos \alpha}\right)^{2}-\left(\frac{v}{\sin \alpha}\right)^{2}=1
$$

$$
\begin{aligned}
& \text { If } \cos \alpha=0,\left\{\begin{array} { l }
{ v = \pm \operatorname { s i n h } y } \\
{ u = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
u=0 \\
v \in \mathbb{R}
\end{array}\right.\right. \\
& \text { If } \sin \alpha=0,\left\{\begin{array} { l }
{ u = \pm \operatorname { c o s h } y } \\
{ v = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
u \in(-\infty, 1) \cup(1, \infty) . \\
v=0
\end{array}\right.\right.
\end{aligned}
$$

2. Let $w=\operatorname{coth}^{-1} \frac{z}{a}$ so that $\frac{z}{a}=\operatorname{coth} w=\frac{e^{2 w}+1}{e^{2 w}-1}$. Solving for $e^{2 w}$, we obtain $e^{2 w}=\frac{z+a}{z-a}$. Taking the logarithmic on both sides, we have

$$
w=\operatorname{coth}^{-1} \frac{z}{z}=\frac{1}{2} \log \frac{z+a}{z-a}=\frac{1}{2}\left[\ln \left|\frac{z+a}{z-a}\right|+i \arg \left(\frac{z+a}{z-a}\right)\right] .
$$

3. $\left(\frac{1-i}{\sqrt{2}}\right)^{\sqrt{2} i}=\left(e^{-i \frac{\pi}{4}+2 k \pi i}\right)^{\sqrt{2} i}=e^{\sqrt{2} \frac{\pi}{4}-2 \sqrt{2} k \pi}, k$ is any integer. The imaginary part is always zero so that all values lie on the real axis. The equation of the line that contains all these point is $\operatorname{Im} z=0$.
4. (a) The Riemann surface of $=(z-1)^{1 / 3}$ consists of 3 sheets superimposed over each other. They are joined together along the branch cut taken to be along the negative real axis starting from $z=1$. The branch points are $z=1$ and $z=\infty$.
(b) $i=e^{i \pi / 2}=e^{i(\pi / 2+2 \pi)}=e^{i(\pi / 2+4 \pi)}$. Hence, $i^{1 / 3}=\left\{\begin{array}{l}e^{i \pi / 6} \\ e^{i 5 \pi / 6} \\ e^{i 3 \pi / 2}=-i\end{array}\right.$.

Note that $-2=2 e^{i(\pi+2 \pi)}$ if the branch $f(1+i)=e^{(5 \pi / 6) i}$ is taken. We then have $f(-1)=2^{1 / 3} e^{i 3 \pi / 3}=-2^{1 / 3}$.
5. (a) Since $\cosh z$ is entire, $\int_{C_{1}} \cosh z d z$ is path independent, we have

$$
\left.\int_{\log 2}^{i \pi / 2} \cosh z d z=\sinh z\right]_{\log 2}^{i \pi / 2}=\sin \frac{\pi}{2}-\frac{e^{\log 2}-e^{-\log 2}}{2}=i-\left(\frac{2-\frac{1}{2}}{2}\right)=-\frac{3}{4}+i .
$$

(b) Since $\sinh i x=i \sin x$, the maximum value of $\left|\frac{1}{\sinh z}\right|$ along the line segment joining $i \frac{\pi}{4}$ and $i \frac{\pi}{2}$ is

$$
\max _{x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]}\left|\frac{1}{\sin x}\right|=\sqrt{2}
$$

Length of the line segment $=\frac{\pi}{4}$. Hence

$$
\left|\int_{C_{2}} \frac{1}{\sinh z} d z\right| \leq \frac{\pi}{2 \sqrt{2}}
$$

6. (a) Let $C: x^{2}+y^{2}=2 x$ or $|z-1|=1$; here C is a circle with centre at $(1,0)$ and radius equals 1 .

$$
\begin{aligned}
\oint_{C} \frac{\sin \frac{\pi z}{4}}{z^{2}-1} d z & =\oint_{C} \frac{\sin \frac{\pi z}{4}}{(z-1)(z+1)} d x \\
& =\frac{1}{2}\left[\oint_{C} \frac{\sin \frac{\pi z}{4}}{z-1} d z-\oint_{C} \frac{\sin ^{\frac{\pi z}{4}}}{z+1} d z\right]
\end{aligned}
$$

Since $\frac{\sin \frac{\pi z}{4}}{z+1}$ is analytic on and inside C, so $\oint_{C} \frac{\sin \frac{\pi z}{4}}{z+1} d z=0$.

$$
\frac{1}{2 \pi i} \oint_{C} \frac{\sin \frac{\pi z}{4}}{z-1} d z=\sin \frac{\pi}{4} \quad \text { by Cauchy's integral formula }
$$

so that

$$
\oint_{C} \frac{\sin \frac{\pi z}{4}}{z-1} d z=\frac{2 \pi i \sqrt{2}}{2}=\sqrt{2} \pi i .
$$

Finally,

$$
\oint_{C} \frac{\sin \frac{\pi z}{4}}{z^{2}-1} d z=\frac{\sqrt{2} \pi i}{2}
$$

(b) Note that $\frac{1}{z+1}$ is analytic on and inside the circle. By the Maximum Modulus Theorem, the maximum value of $\left|\frac{1}{z+1}\right|$ occurs on the circumference of the disc. The parametric form of the circle is $z=1+e^{i \theta}, 0 \leq \theta \leq 2 \pi$ so that

$$
\left|\frac{1}{z+1}\right|^{2}=\frac{1}{\left|2+e^{i \theta}\right|^{2}}=\frac{1}{5+4 \cos \theta}
$$

and its maximum value is attained at $\cos \theta=-1$, that is, $z=0$. This gives the maximum value of $\left|\frac{1}{z+1}\right|$ on and inside the disc to be 1.
7. If f is entire, so is e^{f}, because $\left(e^{f}\right)^{\prime}=f^{\prime} e^{f}$ exists. Now if $\operatorname{Re} f(z) \leq M$ for all z, then $e^{f}=e^{\operatorname{Ref} f} e^{i \operatorname{Im} f}$. So $\left|e^{f}\right|=e^{\operatorname{Re} f} \leq e^{M}$ for all z. By Liouville's Theorem, $e^{f}=K$ which is a constant function. Therefore, $f=\ln K=$, a constant function.
8. Let f be entire and $|f(z)| \leq A|z|$ for all z. By Cauchy's inequality, $\left|f^{(n)}\left(z_{0}\right)\right| \leq$ $\frac{n!M_{R}}{R^{n}}$, where $M_{R}=\max _{\left|z-z_{0}\right|=R} A|z| \leq A\left|z-z_{0}\right|+A\left|z_{0}\right|=A\left(R+\left|z_{0}\right|\right)$.
Hence, $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!A\left(R+\left|z_{0}\right|\right)}{R^{n}}, \forall R>0$. For $n \geq 2$, and take R to be sufficiently large, the inequality is valid for any sufficiently large R only if $f^{(n)}\left(z_{0}\right)=0$. This result holds for all $z_{0} \in \mathbb{C}$, so $f(z)=a_{1} z+a_{0}$. But $|f(0)| \leq A|0|=0 \Rightarrow f(0)=0$ giving $a_{0}=0$, so $f(z)=a_{1} z$. Obviously, $\left|a_{1}\right| \leq A$ as $|f(z)|=\left|a_{1}\right| \cdot|z| \leq A|z|$.

