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Solution to Test Two

1. (a) w = cos z = cosh y cos x − i sinh y sin x = u + iv

⇒
{

u = cosh y cos x

v = − sinh y sin x

Let x = α,

{

u = cosh y cos α

v = − sinh y sin α
. Eliminating y, we get

( u

cos α

)2

−
( v

sin α

)2

= 1.

If cos α = 0,

{

v = ± sinh y

u = 0
⇒

{

u = 0
v ∈ R

.

If sin α = 0,

{

u = ± cosh y

v = 0
⇒

{

u ∈ (−∞, 1) ∪ (1,∞)
v = 0

.

2. Let w = coth−1 z

a
so that

z

a
= cothw =

e2w + 1

e2w − 1
. Solving for e2w, we obtain

e2w =
z + a

z − a
. Taking the logarithmic on both sides, we have

w = coth−1 z

z
=

1

2
log

z + a

z − a
=

1

2

[

ln

∣

∣

∣

∣

z + a

z − a

∣

∣

∣

∣

+ iarg

(

z + a

z − a

)]

.

3.

(

1 − i√
2

)

√
2i

=
(

e−i π

4
+2kπi

)

√
2i

= e
√

2π

4
−2

√
2kπ, k is any integer. The imaginary part

is always zero so that all values lie on the real axis. The equation of the line that
contains all these point is Im z = 0.

4. (a) The Riemann surface of = (z − 1)1/3 consists of 3 sheets superimposed over
each other. They are joined together along the branch cut taken to be along
the negative real axis starting from z = 1. The branch points are z = 1 and
z = ∞.

(b) i = eiπ/2 = ei(π/2+2π) = ei(π/2+4π). Hence, i1/3 =







eiπ/6

ei5π/6

ei3π/2 = −i

.

Note that −2 = 2ei(π+2π) if the branch f(1 + i) = e(5π/6)i is taken. We then
have f(−1) = 21/3ei3π/3 = −21/3.

5. (a) Since cosh z is entire,

∫

C1

cosh z dz is path independent, we have

∫ iπ/2

Log2

cosh z dz = sinh z

]iπ/2

Log 2

= sin
π

2
− eLog 2 − e−Log 2

2
= i−

(

2 − 1
2

2

)

= −3

4
+i.
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(b) Since sinh ix = i sin x, the maximum value of

∣

∣

∣

∣

1
sinh z

∣

∣

∣

∣

along the line segment

joining i
π

4
and i

π

2
is

max
x∈[π

4
, π

2 ]

∣

∣

∣

∣

1

sin x

∣

∣

∣

∣

=
√

2.

Length of the line segment =
π

4
. Hence

∣

∣

∣

∣

∫

C2

1

sinh z
dz

∣

∣

∣

∣

≤ π

2
√

2
.

6. (a) Let C : x2 + y2 = 2x or |z − 1| = 1; here C is a circle with centre at (1, 0) and
radius equals 1.

∮

C

sin πz
4

z2 − 1
dz =

∮

C

sin πz
4

(z − 1)(z + 1)
dx

=
1

2

[
∮

C

sin πz
4

z − 1
dz −

∮

C

sin
πz

4

z + 1
dz

]

.

Since
sin πz

4

z + 1
is analytic on and inside C, so

∮

C

sin πz
4

z + 1
dz = 0.

1

2πi

∮

C

sin πz
4

z − 1
dz = sin

π

4
by Cauchy’s integral formula

so that

∮

C

sin πz
4

z − 1
dz =

2πi
√

2

2
=

√
2πi.

Finally,
∮

C

sin πz
4

z2 − 1
dz =

√
2πi

2
.

(b) Note that
1

z + 1
is analytic on and inside the circle. By the Maximum Modulus

Theorem, the maximum value of

∣

∣

∣

∣

1

z + 1

∣

∣

∣

∣

occurs on the circumference of the

disc. The parametric form of the circle is z = 1 + eiθ, 0 ≤ θ ≤ 2π so that

∣

∣

∣

∣

1

z + 1

∣

∣

∣

∣

2

=
1

|2 + eiθ|2 =
1

5 + 4 cos θ

and its maximum value is attained at cos θ = −1, that is, z = 0. This gives

the maximum value of

∣

∣

∣

∣

1

z + 1

∣

∣

∣

∣

on and inside the disc to be 1.

7. If f is entire, so is ef , because (ef )′ = f ′ef exists. Now if Ref(z) ≤ M for all z,
then ef = eRefeiImf . So |ef | = eRef ≤ eM for all z. By Liouville’s Theorem, ef = K

which is a constant function. Therefore, f = ln K =, a constant function.
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8. Let f be entire and |f(z)| ≤ A|z| for all z. By Cauchy’s inequality, |f (n)(z0)| ≤
n!MR

Rn
, where MR = max

|z−z0|=R
A|z| ≤ A|z − z0| + A|z0| = A(R + |z0|).

Hence, |f (n)(z0)| ≤
n!A(R + |z0|)

Rn
, ∀R > 0. For n ≥ 2, and take R to be sufficiently

large, the inequality is valid for any sufficiently large R only if f (n)(z0) = 0. This
result holds for all z0 ∈ C, so f(z) = a1z + a0. But |f(0)| ≤ A|0| = 0 ⇒ f(0) = 0
giving a0 = 0, so f(z) = a1z. Obviously, |a1| ≤ A as |f(z)| = |a1| · |z| ≤ A|z|.
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