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The lookback feature in a quanto option refers to the payoff structure where the terminal payoff
of the quanto option depends on the realized extreme value of either the stock price or the exchange
rate. In this paper, we study the pricing models of European and American lookback options with
the quanto feature. The analytic price formulas for two types of European style quanto lookback
options are derived. The success of the analytic tractability of these quanto lookback options
depends on the availability of a succinct analytic representation of the joint density function of the
extreme value and terminal value of the stock price and exchange rate. We also analyze the early
exercise policies and pricing behaviors of the quanto lookback options with the American feature.
The early exercise boundaries of these American quanto lookback options exhibit properties that

are distinctive from other two-state American option models.
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1. INTRODUCTION

Lookback options are contingent claims whose payoff depends on the extremum value of the un-
derlying asset price process realized over a specified period of time within the life of the option.

The term “quanto” is an abbreviation for “quantity adjusted”, and it refers to the feature where
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the payoff of an option is determined by the financial price or index in one currency but the actual

payout is realized in another currency.

We examine the pricing models of European and American quanto lookback options whose
payoff depends on the joint processes of the stock price and exchange rate. In our option valuation
framework, we assume lognormal process for the underlying stock price and exchange rate, and
continuous monitoring of the realized maximum of these two stochastic state variables. For the
joint quanto lookback options, the lookback feature is applied on the stock price process and the
exchange rate in the payoff is chosen to be the maximum of a pre-determined floor value and the
terminal value at expiry. When the lookback feature is applied on the exchange rate process, this
leads to the mazimum rate quanto lookback option. Here, the exchange rate in the payoff is given

by the realized maximum value over some monitoring period.

The pricing of lookback options poses interesting mathematical challenges. The analytic price
formulas for European one-asset lookback options have been systematically derived by Goldman et
al. (1979), and Conze and Viswanathan (1991). For two-state European lookback options, He et
al. (1998) and Babsiri and Noel (1998) have obtained analytic expressions of the joint probability
density functions of the extremum and terminal values of the prices of the underlying assets.
However, due to the analytic complexity in their analytic expressions for the density functions, they
did not proceed further in evaluating the discounted expectation integrals. Instead, they computed
the lookback option prices via numerical integration of the discounted expectation integrals or

Monte Carlo simulation.

In this paper, we derive the analytic price formulas for the above two types of European quanto
lookback options under the lognormal assumption of the exchange rate and stock price processes.
The success of the analytic tractability of these quanto lookback options relies on our derivation of
a succinct representation of the joint density function of the extreme value and terminal value of the
stock price and the exchange rate. In the derivation procedure, the standard quanto pre-washing
techniques for dealing with quanto option models are used. With the availability of the closed form
price formulas, we are able to comprehend various contributing factors to the value of these quanto

lookback options.

The characteristics of the early exercise regions and optimal early exercise policies of American
options on several risky assets are known to depend sensibly on the payoff structures of the op-
tions. Broadie and Detemple (1996) and Villeneuve (1999) provided some interesting results on the

characterization of the early exercise regions of American extremum options and spread options.
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Except for the perpetual American options with very simple payoff structures, like the perpetual
Margrabe option and perpetual zero-strike maximum option [see Gerber and Shiu (1996)], it is not
feasible to obtain analytic price formulas for multi-state American options. At best, we may ob-
tain the analytic representation of the early exercise premium in terms of an integral that involves
the exercise boundary function. The early exercise boundary is then solved via the solution of an

integral equation.

It would be interesting to examine how the lookback feature interacts with the American early
exercise feature. For example, one would expect early exercise to be delayed when the current asset
value is close to the current realized extremum value. One example of an American option with
lookback feature is the Russian option (perpetual American lookback option). Closed form price
formulas of Russian options have been derived in several papers [Duffie and Harrison (1993); Shepp
and Shiryaev (1993)]. Lai and Lim (2003) and Yu et al. (2001) examined the exercise boundaries of
one-asset American lookback options. In this paper, we examine the optimal early exercise policy
of quanto lookback options whose payoff depends on the stock price and exchange rate and the

realized extremum value of one of the state variables.

In the next section, we summarize the quanto pre-washing techniques for dealing with the
quanto feature in the pricing models, and present the probability density functions that involve
the joint processes for the maximum value and the terminal value of the stock price and exchange
rate. We then derive the analytic price formulas of the European style joint quanto lookback option
and maximum rate quanto lookback option. In Section 3, we analyze the early exercise policies
and pricing behaviors of these two types of quanto lookback options with the American feature.
The properties of the optimal exercise boundaries are verified through numerical experiments. The

paper is ended with conclusive remarks in the last section.

2. EUROPEAN QUANTO LOOKBACK OPTIONS

In this section, we derive the analytic price formulas of two types of European quanto lookback
options, where the lookback feature is applied on the exchange rate or the stock price. The usual
assumptions of the Black-Scholes option pricing framework are adopted in this paper. Let F}
denote the exchange rate at time ¢, which is defined as the domestic currency price of one unit of
foreign currency. Let rg and r; denote the constant domestic and foreign riskless interest rates,

respectively. Under the risk neutral measure, the stochastic process of F} is assumed to be governed
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dF

?t = (rg —rg) dt + op dZp, (2.1)
t

where op is the volatility of F' and dZp is the standard Wiener process. In the foreign currency

world, the stochastic process for the risk neutralized stock price process S; is assumed to follow

ds

< = (rp—q) dt + o5 dZs, (2.2)
t

where og and ¢ are the volatility and dividend yield of S, respectively, and dZg is the standard

Wiener process. By applying the standard quanto prewashing technique [see Dravid et al. for a

thorough discussion of the technique|, the risk neutralized drift rate of S; in the domestic currency

world is given by
6% = ry —q— posor, (2.3)

where p is the correlation coefficient between dZs and dZp, with p dt = dZs dZp.

We consider the pricing models of two types of European quanto lookback options whose

terminal payoff functions in the domestic currency world are given by

(i) Quanto call option with maximum exchange rate

Vinae (S, F,T) = FIToTl (g, )T (2.4a)

max

where [’ 1[52’5 I'is the realized maximum of the exchange rate F' over the time period [Ty, T,

T x>0
and K is the strike price in foreign currency. Here, 2t = .
0 <0

(ii) Joint quanto fixed strike lookback call option

Vioint (S, F, T F.) = max(F,, Fp)(SteTT — gyt (2.4b)

max

where SE%T] is the realized maximum of the stock price over the time period [Ty, 7], and F,

is some pre-specified constant exchange rate.

2.1 Quanto call option with maximum exchange rate

We assume that the current time lies within the period [Ty, 7|, where the maximum value of the
exchange rate is monitored continuously. For convenience, we take the current time to be the zeroth
time so that Ty < 0 <T". We define the following unit variance stochastic normal variables

1.8, 1 F
Xy = —In— d Vi=—mh—, (>0 2.5
t og n S an t o 1 F” > ) ( )



where S and F are the current stock price and exchange rate, respectively. In the domestic currency
world, the risk neutralized drift rates of X; and Y; are given by
0'2 0'2
Ty —Qq— posop — &5 Tqg—Tf— 3

px = and  pry = ———*=, (2.6)
gs op

respectively. In addition, we define the stochastic random variable M; to be the logarithm of the

normalized maximum value of the exchange rate over the future period [0, |

[0,¢]
1 Pz
M;=—In .
or

2.7)

Also, we denote the corresponding quantity for the realized maximum value over the earlier period
F[TO:O]
[70,0] by My = —1In n;;w . In terms of M; and X; defined above, the terminal payoff of the
OF
quanto call option with maximum exchange rate can be expressed as

F[TO’T](ST _ K)+ _ FeCF max(Mo,MT)(SeUsXT _ K)Jr. (2.8)

max

The value of this Furopean maximum rate quanto call at the current time is given by
Vinae = "1 / / Feor max(Mom)(geose _ gyt p (2 m, T) dmda. (2.9)
—oo J 0

Here, the joint density function of X7 and My, fias(x,m,T), is given by
aGmafL’

m

Jmaz(x,m,T) = (x,m,T), (2.10a)

where G0 (2, m, T) is the distribution function defined by
Gaz(x,m,T) de = P(X € dz, M < m). (2.100)

We write gpqz(2,y, T';m) as the joint density function of Xy and Yr with an absorbing barrier m

that is greater than y*, that is,
Imaz (T, y, Tym) dedy = P(X € dz,Y € dy, M < m). (2.11a)

Note that G ez (2,9, T) and gpaz(2,y, T; m) are related by

Goaz(z,m,T) / Imaz(x,y, Tym) dy. (2.11d)

By applying the reflection principle for Brownian processes together with effecting change of mea-

sure via the Girsanov Theorem, one can obtain [Heynen and Kat (1994)]

Ymax (177 y, T; m) - {¢2 (%v y, T P) - 62uym¢2(% —2pm, y—2m,T; P)} 1 {m>y*th (2] 2&)
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where ]. 4 is the indicator function with respect to A. Further, welet © = z—pux T and y = y—puy T,
where px and uy are defined in Eq. (2.6), p is the correlation coefficient between dZg and dZp,

and ¢o (2, y, T; p) is the bivariate normal density function with zero means and unit variance rates

as defined by

¢2(%7 377 Ta p) -

—%2_2@7“72) (2.120)

1
I B O
A ( 201 — )T

As a remark, He et al. (1998) obtained an alternative analytic representation for f,q. (2, m,T)
through a tedious procedure (see Theorem 2.3 in their paper). Using their analytic result, it is

almost insurmountable to obtain an analytic price formula for any two-state semi-lookback option.

Theorem 1

The analytic price formula for the European maximum exchange rate quanto lookback call option

is given by
Vinar — FU0 [ 0SSNy (dy, —e1=p) — 74T K Ny (dy, —e3; =)
+ F {e_qTSNg(c?h’e\l; p) — e_rfTKNQ(C/l\27/é2; p)} (2.13a)
+ FUF/ elopt2uy)m 6_(Td_6%)T€2pUSmSN2(J17_gl;_p)
Mo

— e T KN, (@7 —€o; —p)} dm,

where No(x, y; p) is the standard bivariate distribution function with zero means and unit variances,

and

p ln% +puxosT In —ng;o] +pyopT
- —7 € - b

2 Us\ﬁ 2 UF\ﬁ

d1:d2+05ﬁ7 61:62+p05\ﬁ7

dy = dg + pop /T, G —eg +opVT,

C/l\lic/l\g+05ﬁ7 /6\1:/6\2+p05ﬁ7

~ 2pm . m+uyT

dy = do + —, €y = ————,

2 2 T 2 JT

J1:J2+Usﬁ7 g1:g2+p05ﬁ. (2.]3())

The proof of Theorem 1 is presented in Appendix A. The price formula V.. consists of

three terms. The first term gives the contribution to the option value that is conditional on
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F,LQTS;&T] = Fﬁggo] (that is, no updated realized maximum value on F over the future period [0, 7])

and S7 > K. The second term corresponds to the scenario where F,LQTC?;&O] < Fgg;ﬂ and St > K.
The last term gives the rollover bonus value of potential upward adjustment on the realized value

of the exchange rate whenever a new maximum value of exchange rate is realized.

70]

Zero dertvative condition at F' = F}Zgz

[10,0]

When the current value of exchange rate F' happens to be at the realized maximum value F. %"

should the option price be insensitive to infinitesimal changes in F [To,017 Mathematically, this is

max
v,
equivalent to ask whether ———== = 0. This result can be shown to be true by computing
0 lMo=0

oV,
ﬁ directly using the integral representation of V... in Eq. (2.9) (see Appendix B).

0

The zero derivative condition at F' = FII0.0 is important in the design of the finite difference

algorithm for the numerical solution of the quanto lookback option. This is because the full pre-
scription of the boundary conditions of the option model is required in the construction of the finite

difference scheme.

2.2 Joint quanto fixed strike lookback call option

For the joint quanto fixed strike lookback call option, the maximum value is monitored continuously
on the stock price process S;. Accordingly, we define the stochastic random variable U; to be the
logarithm of the normalized maximum value over the period [0, ] of the stock price, that is,

1 Sk

U, =—1 2.14

and denote the corresponding quantity for the realized maximum value over the earlier period [Tp, 0]
S[TO:O]

by Uy = — In /2
0s

call can be expressed as

. In terms of Ur, Uy and Yr, the terminal payoff of the joint quanto lookback

max(F,, Fp)(STo T _ )+

max

RS~ )it FL > Py and {0 > S0

Fo(Se7sVr — K)tif F, > Pp and SIT1 > glo0

_ : (2.15)
Fe?rY7(Se?sVo — )T if Fp > F, and S0 > S10-1]

FeoP¥T(SeosUt — k)T if Fp > F, and SI%T1 > glTo.0]

max
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By following similar derivation procedure as that for Gy, (2, m,T) in Eq. (2.11b), the density

. .. . 0G0
function of the joint processes of Y7 and Up is given by a]omt (y,u,T), where
U

Gjoint(y7 u, T) - / gjoint($7 Y, T? u) dx (2]6)

— 00

and
Gioint(x,y, Tiu) = {d2(@, 4, T; p) — €2HX o (% — 2u,y — 2pu, T; p)}l{u>x+}- (2.17)

The form of the analytic price formula of the joint quanto lookback option depends on the

[T0,0]

ol — K. When the option is currently in-the-money or at-the-money (corresponding to

sign of S
SITo.0 _ g > (), it is guaranteed to expire in-the-money. On the other hand, when SI20:9 — < 0,
the option will expire out-of-the-money when SIZ09 > SI0.T1 " \ye derive the price formula of the

joint quanto lookback call under the following two cases:

1. S0 « K (currently out-of-the-money)

In & =
oG join
v@maM{ / / St — K) S (4, T) dudy
L % U

oG ; L
e FY osu __ Join
+ F/ Vo /L s (Se K) S (y,u,T) dudy}. (2.18)

2. SII0.01 > K (currently in-the-money or at-the-money)

—ln— Ui

ije—”T{ (S = / / 0 aG]“”( u, T) dudy
In £ =
G'oin
+F/ / es" — )3] Yy, u,T) dudy
Uo du
U
IRACT / /0 0 S 0, T dudy

+ F/ / €TFY(Se7S U —K)an‘””t (y,u,T) dudy}. (2.19)
L n L= Jug du

By performing the tedious integration precedures (some technical details are presented in

Appendix C), we obtain the analytic expressions for V,;,; as depicted in Theorem 2.

Theorem 2

The analytic price formula of the joint quanto fixed strike lookback call option is given by
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1. S < K

max

d
‘/joint - 6_TOITFC |:S€6$TN2(d17 _fla _p) - KNQ(d27 _f27 _p):|

b+ e TR [Se(rf_q>TN2(317 ﬁ;p) - KN2(6727 Ji P)}

00
+ e—rdT / Use(2ux+as)u

2 |n
°s

[FCSNQ(—€27—E; p) + elra=rT2orre poNy (&) fii—p)| du, (2.20)

=

where dy, dy, d; and dy are defined in Eq. (2.13), and

F lmFﬂ + pyorT

2 opVT

fo=F2topVT, Fi = fot posVT,
2pu

fo=fot fi=J2topVT,

\ﬁ )

The first two terms in Eq. (2.20) resemble closely to the price formula for the joint quanto

fi = fo+posVT,

g — & + popVT. (2.21)

€o =

European call option (Kwok and Wong, 2000), while the last term can be interpreted as the

rollover bonus value for potential upward adjustment on the realized maximum value of the

stock price.

2. S0l > |

max

Vioint = (SH0:0 — K) [e—rdT FeNo(—d3!, — fo; p) + Fe™" T Ny (— !, fa; —P)}
+ e, {Se‘scéTNg(d{V[7 —f15=p) = KNo(d3", — fo; —p)}
4o TR {Se(rf—q>TN2@w7ﬁ;p) — KNQ(@”@;p)}
PR /°° ogelZixtos)u
Uo

[PCSN2<—E27 —faip) + el TTIT IR PN NG (<, fr3—p) | du,(2.22)

where f1, f2, f1, f2, f1, f2, € and & are defined in Eq. (2.21), and

ln% + puxosT
dM . Smax : dM — gM 4 & \/ﬁ
2 Us\ﬁ 1 2 S
dy' = dy' + popV/T, A = &' +osVT. (2.23)



The first term corresponds to Sﬁgfl > K and conditional on no updated realized maximum

value on S over the future period [0,7]. The second, third and fourth terms are similar to

those in Eq. (2.20) except that the strike price K is replaced by SlTo.0

3. AMERICAN QUANTO LOOKBACK OPTIONS

In this section, we would like to analyze the behaviors of the early exercise policies of two types of
American quanto lookback options, whose exercise payoffs are defined in Egs. (2.4a,b). To proceed
with the analysis, we first present the linear complementarity formulation of the pricing models,

then examine some monotonicity properties of the price functions and the exercise boundaries.

3.1 American maximum exchange rate quanto call

Let Vs (S, F, 75 Fpae ) denote the value of an American maximum rate quanto call option in domestic
currency, where 7 is the time to expiry and F),,. is the realized maximum exchange rate up to
the current time. By following the variational inequality approach of deriving pricing models for
American style path dependent options [see Wilmott et al. (1993) for reference], the price function

Var (S, F, 73 Finae ), if exists, solves the following linear complementarity formulation:

oV,
a_M —LVi >0, Vi > Fle max(S — K, 0),
-
oV,
(a_M - LVM) [Vir — Fraemax(S — K,0)] =0, §>0,0<F < Fpu,7 €[0,7],
-
oV,
M —0 and Vi (S, F,0; Fras) = Finae max(S — K, 0), (3.1)
aFmaz F:Fmaw

where L is the differential operator defined by

2 2 2 2 2
0% o O op 0 O
— - I ZF
L= 5 gg trosorStoemn + 5 M o
0 0
+6gsa—5+(rd—rf)Fa—F—T‘d (32)

In the continuation region, Vj; satisfies

OV
or

—LVy =0 and Vg > Frae max(S — K, 0); (3.3a)

while in the exercise region, V), satisfies

oV,
a_M —LVi >0 and Vi = Flaemax(S — K, 0). (3.3b)
-
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The Neumann boundary condition %@L = 0 arises due to the property that if the

=Frmax
current exchange rate /' happens to be at its maximum value so far, the probability that the
current exchange rate remains to be the maximum at later times is essentially zero [see Goldman

et al. (1979)]. Hence, the option value V}; should be insensitive to infinitesimal change in Fj,,,..

The existence of smooth solution (degree of smoothness as required in our subsequent anal-
ysis) to the above linear complementarity formulation may not be too easy to establish. Barles
(1997) showed that continuous viscosity solution exists for the one-asset lookback options. Simi-
lar technique can be used to establish the existence of continuous viscosity solution for the above
pricing model of the American maximum rate quanto call. The rigorous proof of the existence of
sufficiently smooth solution to Eq. (3.1) is beyond the scope of our paper. Interested readers may
consult Friedman’s book (1982) about the regularity analysis of solution to linear complementarity
formulation. By assuming that the sufficiently smooth price function Vi, (S, F,7; Fqe) exists, we
then formally analyze the analytic behaviors of the critical stock price at which it is optimal to

exercise the American maximum rate quanto lookback call option.

In the above linear complementarity formulation, F,,.,. appears apparently as a parameter.
In the subsequent analysis, it is more convenient to use F),,. as the numeraire and consider the

monotonicity properties on the normalized price function
Un(S,6,7) = Vi (S, B, 75 Frnae )/ Frnazs,  where € = F/Fpu0. (3.4)
We write the critical stock price as S%,(&, 7) with its dependence on ¢ and 7.

Proposition 3

The normalized price function Uy, (S, €, 7) satisfies the following monotonicity properties with re-

spect to 7 and &.
AU
(2) or

BUr
(b) 3¢~ =0

>0

The proof of Proposition 3 is presented in Appendix D. Similar to other American call options,
the continuation region and the exercise region of Vj; correspond to S < S%,(§,7) and S > Sy, (&, 7),
respectively. Using the above monotonicity properties on Uys, we are able to obtain the following

analytic properties on S3,(§, 7).

Theorem 4
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Consider the optimal exercise boundary S%,(&, 7).
(a) At time close to expiry, 7 — 01, we have

Td

max L—)K if g > 62
St(€,0) = ( ra =85

00 if rg < 6%

(b) S3,(&, 7) is monotonically increasing with respect to 7 and ¢&.

The proof of Theorem 4 is presented in Appendix E. From Theorem 4, we conclude that
when rg < 627 it is never optimal to exercise the American maximum exchange rate quanto call
prematurely. By virtue of the monotonicity property of the critical stock price on &, S5, (F, 75 Fiaz)

would increase with increasing F' for fixed Fj,.. and decrease with increasing £, .. for fixed F.

We performed numerical calculations to compute the exercise boundaries so as to the verify the
results obtained in Theorem 4. Figure 1 shows the exercise boundaries of an American maximum
exchange rate quanto call option at different times to expiry 7. The parameter values of the option

model are rq = 0.05,7; = 0.05,q = 0.02,09 = 0.2,0p = 0.2,p = 0.5, K = 1, with Tdéd K =1.25.
Trq — S

The monotonicity properties on Si,(£,7) with respect to ¢ and 7 are clearly revealed in Figure

1. The exercise region and the continuation region are on the right side and the left side of the
exercise boundary, respectively. It is interesting to observe that S%,(¢, 7) changes abruptly at some
threshold level of £&. When ¢ increases beyond this 7-dependent threshold level, S}, (&, 7) increases
quite substantially implying that the holder will wait for much significant increase in stock price in
order to exercise the maximum rate quanto lookback call option. In particular, when F' becomes
close to Fipaq, 5%,(€,7) becomes exceedingly large. This is reasonable since it is much likely that a
higher value of Fj,.. will be realized later so the option holder should restrain from exercising the

option prematurely.

The theoretical analysis of the monotonicity property of Vi (S, F,7;p) with respect to the
correlation coefficient p is not straightforward, due to the presence of p in both the covariance term
posopSF 32% and the drift term 625 % Since the drift term is expected to predominate
over the covariance term and ¢% is a decreasing function of p, the option value Vi, (S, F,7; p)
would be expected to be a decreasing function of p. Actually, similar monotonicity behavior on
p is observed in other quanto call options [Kwok and Wong (2000)]. In all our wide range of
numerical experiments that were performed to testify this monotonicity property, we observed that

Vi (S, F,7; p) always appears to be a monotonically decreasing function of p. In Figure 2, we show
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the result of a typical calculation where Vy/ (S, F, T; p) decreases monotonically with increasing p.
The parameter values used in the calculation are ry = ry = 0.05,q = 0.02,09 = op = 0.2,7 = 0.1

and K =5 =F =F,. = 1.

3.2 American joint quanto fixed strike lookback call option

Let V;(S, F, 7; Sz ) denote the value of an American joint quanto fixed strike lookback call option
in domestic currency, where S, is the realized maximum value of the stock price up to the current
time. The price function V;(S, F,T; Spmaz), if exists, solves the following linear complementarity

formulation:

ov.
a_J —LV; >0,  Vy;>max(F,F.)max(Smae — K, 0),
=

v
(% — LVJ) [V —max(F, F.) max(Spaz — K,0)] =0, F >0,0<5 < Spaz,7€[0,7T],
-

oVy
aSmcwg

=0 and Vy(S,F,0; Spaz) = max(F, F.) max(See — K, 0), (3.6)
S=Smax

where L is the differential operator defined in Eq. (3.2). In the continuation region, V; satisfies

V.
% —LV; =0 and V;>max(F,F.) max(Spae — K, 0); (3.70)
~

while in the exercise region, V; satisfies

V.
% —LV;>0 and V; = max(F,F.) max(Smae — K, 0). (3.7b)
-

Gerber and Shiu (1996) showed that the exercise boundary of an American option on the
maximum of two stock prices with zero strike consists of two branches. When the two stock prices
are close in value, the holder of this American option should delay premature exercise. This is
because the advantage of choosing the maximum of the two stock prices is not distinctive when
the stock prices are about the same value. Only when either one of the stock prices is significantly
higher than the other should the American option holder chooses to exercise. Under such scenario,

the chance of regret of premature exercise would be low.

Due to the presence of the factor max(F, F.) in the payoff function, the exercise boundary of an
American joint quanto lookback call would be expected to consist of two branches: F| {fp(S y T3 Smaz)

and F7*

i 0 (5 T3 Simas). Obviously, early exercise is advantageous only when S,,,,, > K, that is, the

option is currently in-the-money. When 5,,,.. > K but the value of F' is close to the predetermined

constant Fi., the holder should delay premature exercise since the advantage of taking the maximum
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of F' and F is not significant. The chance of regret of early exercise is low only when F' is sufficiently
above F_. or below F.. In the F-7 plane, conditional on S,,,, > K, the continuation region
is bounded by the two branches of the exercise boundary: F;p(Sﬂ'; Siaz) and F (S, 73 Spa)-
When F' > Fj or F' < Fj

1w, it becomes optimal to exercise the American joint quanto lookback

call. Therefore, one part of the exercise region is to the right side of the branch F;p(Sﬂ'; Simaz)

and the other part is to the left of F}% (S, 7; Smaz)-

We performed numerical calculations to compute the early exercise boundary of the American
joint quanto lookback call. In Figure 3, we show the plots of the two branches of the exercise
boundary corresponding to different pairs of values of S and 5,,,,,. The parameter values used in
the calculations are rq = 0.05,r; = 0.05,q = 0.02,09 = 0.2,0p = 0.2,p=05,F, =1 and K = 1.
The two branches Fy;,(S, 75 Spae) and Fi

low

(S, 7; Spax) both originate from F' = F. at 7 — 01, We
observe that Fy (S, 7;Smax) and I, (S, 7; Smax) are, respectively, monotonically increasing and
decreasing with respect to 7. For a fixed value of 7, F, is monotonically decreasing with respect to
Simaz (S s fixed) but monotonically increasing with respect to S (Sy,q. is fixed). The corresponding
monotonicity properties on Fj, =~ are reverse to those on Fj,. These monotonicity properties can
be explained by intuitive arguments relating to the chance of regret of premature exercise. The

chance of regret decreases with increasing value of S, (option being deeper in-the-money) and

decreasing value of S (less chance to realize a new maximum value of the stock price in the future).

Furthermore, the exercise boundaries exhibit properties that depend sensibly on the ratio of
Smaz/S. When S, /S is quite close to 1, it may occur that the exercise boundaries tend to level
horizontally at sufficiently large or small value of /', indicating that it is never optimal to exercise at
any exchange rate ' when the time to expiry 7 is beyond certain threshold value. In Figure 3, such
phenomena are revealed by the behaviors of the solid boundary curves and dashed boundary curves
that correspond to Sy, /S = 1.35 and S, /5 = 1.30, respectively. However, when S,,,,./S is
sufficiently large, F\¥ (S, 7; Smaa) and F

low

(S, 7; Simaz) are defined for all 7, like that shown by the
dotted boundary curves corresponding to Sy /S = 5.0. In this case, it is always optimal for the
holder to exercise the option at any 7 when sufficiently high or low value of F' is reached. From
financial intuition, when S,,,. /S is quite close to 1, the option holder may choose not to exercise
at any value of F' when the expiration date is sufficiently distant from the current time with the
view that a new maximum value on S may be realized. However, when S,,,.. /S is relatively large,
the probability that a new 5,,,.. being realized is small. Accordingly, there does not exist some

threshold value of 7 beyond which the option holder never exercises optimally. In Appendix F, we
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present the theoretical arguments explaining the above phenomena on the exercise policies for the

American joint quanto lookback call.

In Figure 4, we plot the option value of the American joint quanto lookback call at different
times to expiry 7. We choose S = 1 and 5,,,; = 1.35, and other parameters of the option model
are identical to those used in Figure 3. The intrinsic value, max(F, F.) max(S,... — K,0), of the
lookback call is represented by the dotted horizontal line and inclined line. It is observed that the
option value curves corresponding to 7 = 0.25 and 7 = 0.5 intersect tangentially the intrinsic value
lines at F;, above Fi. and at I, below F¢, but not so for the option value curve corresponding
to 7 = 1.0. Hence, when 7 = 1, it is never optimal to exercise at any level of F'. This is consistent
with the observation in Figure 3 that the horizontal line 7 = 1 always lies in the continuation
region corresponding to the case S = 1.0 and S, = 1.35. Also, the option value is seen to be

monotonically increasing with respect to 7.

Some of the properties of the exercise policy and exercise boundary of the American joint

quanto lookback call option are stated in Theorem 5, the proof of which is presented in Appendix

G.

Theorem 5

The exercise boundary of the American joint quanto fixed strike lookback call option in the F-7

(S, 7; Spaz ), where

plane consists of two branches: I} (S, 7; Spaz) and Fi

Fip(S, 75 Simae) = inf{ F" > I, (S, F, 75 Spaa) € €}

EZw(S7T;Sma$) - Sup{F < Fc : (57 FvT;Smaz) € g}

Here, we use £ to denote the exercise region and follow the convention that inf () = oo and sup® = 0.
For fixed values of 7,5 and S,,.:, conditional on S, > K, the option should be optimally
exercised when F' > F¥ or F' < Fy . The continuation region lies within Fy¥ (S, 7;Sm4.) and
F;p(& 73 Smaz). The two branches of the exercise boundary intersect at ' = F, at 7 — 01, At
time close to expiry, conditional on Sy, > K, the option should be optimally exercised for any

exchange rate F' other than F,.

4. CONCLUSION

The analytic price formulas of two types of European quanto lookback options have been derived.

The analytic tractability of these two-state lookback option models has been extended via the use
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of a succinct analytic representation of the density function of the joint process of the extremal
value and terminal value of the exchange rate and stock price. The price formulas help provide the
financial interpretation of the contributing factors to the value of the European quanto lookback
option.

We have also analyzed the characterization of the exercise boundaries and pricing behaviors
of these two types of quanto lookback options with the early exercise privilege. For the American
maximum exchange rate quanto call, the critical stock price S%;(F,T; Finae) at which it is optimal
to exercise the option is seen to be monotonically increasing with respect to time to expiry 7
and exchange rate F' (for fixed realized maximum exchange rate F),,.). We show that it is never
optimal to exercise the maximum exchange rate quanto call if the effective dividend yield of the
foreign stock in domestic currency world is non-positive. Also, when F' comes close to Fjqe, it
becomes much less likely to exercise the option prematurely. For the American joint quanto fixed
strike lookback call, the exercise boundary consists of two branches. Conditional on the option
being in-the-money (current realized maximum stock price Sy,q; is higher than the strike price K),
it is optimal to exercise the option only when the exchange rate F' is either sufficiently above or
below the predetermined constant exchange rate F,.. At time right before expiry, it is optimal to
exercise the American joint quanto lookback call at any level of exchange rate F' other than F..
These results add new insights into the understanding of the characterization of the early exercise

policies of the general class of multi-asset American options.
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APPENDIX A: PROOF OF THEOREM 1

From Egs. (2.9), (2.10a,b), (2.11a,b) and (2.12a,b), we obtain

e " T op M, MO 7S aGmCW
Vinae = €744 Fe?F 0 ST — K) (x,m,T) dmdx
=1 om
—ryT OG mazx
e eUFm(SeUSz — K) (x,m,T) dmdz. (A1)
L1 & J g om

By performing the inner integration with respect to m, the first integral can be expressed as

o0 MO
I, = ¢ ral peorMo /1 . / (Se75* — K)
glnﬁ — 0

[p2(@, 4, T p) — €Y Moy (& — 2pMy, 5 — 2Mo, T’ p)| dydz. (A2)

oG
For the second term in Eq. (A1), we consider the second term in ~ and apply parts integration

to obtain

oo o m - ~
Mo om | J_ o

Mo
_ orMo / 21y Mo g, (5 — 2p Mo, 5 — 2Mo, T; p) dy

mM—00

— lim eUFm/ Y Mo (Z — 2pm, y — 2m, T p) dy

1 op / ot / G2z — 2pm,y — 2m,T; p) dydm. (43)
Mo

Note that the second term in /7 [see Eq. (A2)] cancels with the double integral arising from the first
term in FEq. (A3). The second term in Eq. (A3) can be shown to be zero even with the presence
of the two exponential factors e?#™ and e?*¥™. One can show that the negative quadratic terms
in m in the exponent of the exponential function associated with ¢o causes the term tending to
zero as m — o0 at a rate faster than the growth of the two exponential factors. By observing this

cancellation, Eq. (A1) can be expressed as

Vinaw = el

o0 MO
e [ [ Se = K)oa(a5. i) dyda
s=Ing J—oo

+/ / e7FM(8e75T — K)go(x,m, T; p) dmdx
55 In% JMo

+ UF/ / / e(UF+2"Y>m(SeUSz - K)
Mo % In % —00
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where m = m — uyT. Here, the first two integrals are expressible in terms of Na(-,-;p) while the

last integral can be simplified to become a single integral with the integrand involving Na(-, -; p).

APPENDIX B: PROOF OF THE ZERO DERIVATIVE CONDITION AT F = £

By differentiating V.4, in Eq. (A1) with respect to My, we obtain

a‘/rnaz —r, T M, i Mo alemaz
— e ral orMo osT _ T
Mo e ope Llng/o (Se K) B (z,m,T) dmdx
s
- aGmafL’
+ eUFMO/ (Se7s* — K)———(x, My, T) dx
L& om

Q
16}

= op M, osT aCTY'maz

- e7FMo(Se75% — K) (z, My, T) dx

L& om
S

The second and the third terms cancel with each other, and the first term becomes zero when My

is set equal to zero. Hence, we obtain

a‘/mcwg
oM,

=0.
Mo=0

APPENDIX C: PROOF OF THEOREM 2

We consider the following two separate cases:

1. S < K

1 K

By observing that Uy < — In 5 and the first term in gjoint(, v, T; u) is independent of u, we
as

transform V., in Eq. (2.18) into the following form

ST

‘/joint - e_rdT {Fc ’ /1 " (SGUSU - K)¢2(ﬂ7 377 T; P) dUdy
—o0 —— In &
cg S

L fe o
op P
v / (Se7s" — K)

1 1p &
cg S

—o0 In

0 v — -
u U XX oo (Z — 2u, 7 — 2pu, T’ p) dl} dudy
U —o0
- (S5 — K)ol §, T p) dudy
L pfe S E
o P cg S
- F 7Y (Se?s" — K)
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where & = u — puxT. The first and third integrals can be expressed in terms of Na(-,-;p) in
a straightforward manner. By applying parts integration like that in Eq. (A3) and observing
similar occurrences of vanishing boundary terms arising from parts integration, the second and

the fourth integrals can be expressed as

o0
second integral = e_rdT/ ggelPrxFos)u
In %

1

Fe

o0
fourth integral = e_rdT/ ogelPuxtos)u

2 In
o5

ulx

FS/ / 7PV o (T — 2u,y — 2pu, T} p) d;rdy] du.
1 hEe J_o

Both of the above two integrals can be expressed as a single integral with integrand involving
N2(' )" 7p)
S = K

The first and third integrals in Eq. (2.19) can be expressed as

ln
e T (S0 — / ¢2(%7§7T ;p) dady
and

o Uy
e " T F(SEeY — K) /1 ; / 7 o (4,4, T; p) dady,
— In =% o]

respectively. These two integrals can be simplified to become the first term in price formula

(2.22) [with the common factor (Shor) — K)]. The second and the fourth integrals in Eq.

(2.19) are similar to the two integrals in Eq. (2.18) except that the lower integration limit

becomes Uy instead of — In rh By applying similar parts integration procedures and again
s

observing the occurrences of vanishing boundary terms arising from parts integration, the sum

of these two integrals give the remaining terms in price formula (2.22).

APPENDIX D: PROOF OF PROPOSITION 3

For any American options, the value of the longer-lived one is always worth at least that of its

oU 1 9V
shorter-lived counterpart, so M M > 0.
or Frnaz OT
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(b) For a given value of Fj,,q., Vas (S, F,7T) is a non-decreasing function of F' since a higher value of

I would mean at least the same or a higher value of FHS;T] to be realized at expiry compared
oU oV
to the counterpart with a lower value of F'. We then have 35]'\/[ = 3_;;/[ > 0.

APPENDIX E: PROOF OF THEOREM 4

oU
The monotonicity property: 3—M > 0 is maintained in the continuation region even when 7 — 0t.
T
First, it is obvious that S},(£,01) > K. For S € (K, S3,(£,01)), we have Up(S,€,07) = 5 — K.
U -
Since Ups(S,€,07) should satisfy aa—M = LUy, where
T

~ 0% 0? 0? 0% 5 0?
T- Z552 9 s Tre2 9
5 0 g5z PSS gaE T ga
0 0
+5gsa—5 +(ra— Tf)fa—é — rd,
we obtain
U
| =885 —ra(S = K) = raK — (ra = 8%)5.
=0
For r4 > 6%, the condition: M > 0 is satisfied only for S < [d — K. On the other hand,
or =0 Td — 65
a OUn
when rg < 0%, —— > 0 always holds true. We then conclude that
=0
max (1 T—d) K if 7y > 6%
S (&,01) = T = 85 )
00 if ry < 6%

The above result agrees with the usual result for critical asset price close to expiry for American
call options when we visualize 74 — 62 as the effective dividend yield of the foreign stock in the

domestic currency world.

To show the monotonicity property of S%,(&, 7) with respect to 7, we let 75 > 7y and consider
the evaluation of Ups(S,&,7) at stock price level S = S3,(£,71) and at two times 71 and 72. By

virtue of the monotonicity property of Up; on 7, we have

Un (S (€, m1), €15 72) > Ung (S (S,71), 61, m1) = Sy (§,11) — K.

This implies that the American option remains in the continuation region when S = 5%,(¢, 1) and

T = T9. Since the exercise region is on the right side of the continuation region, we deduce that

S]E(£7T2)>S7\4(57T1)7 Tg > T1.
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The monotonicity property of S%,(£,7) with respect to & can be established by using the

monotonicity property of Uys on € and following a similar argument as above.

APPENDIX F: SOME PHENOMENA ON THE EXERCISE POLICIES
OF AN AMERICAN JOINT QUANTO LOOKBACK CALL

Let Viig (S, Fy 75 Siaz) and Viieat(S, F, 75 Spmaz) denote the price function of the lookback options

with terminal payoffs F.(Sy.ae — K)T and F(S,,.. — K)T, respectively. Obviously, we have
Vi(S, Fy 75 Smaz) = Viie (S, Fy 73 Simaz)  and  Vi(S, Fy 75 Spmaz) = Vieat (S, Fy 75 Smaz), (F'1)

since the exchange rate in the payoff of V; is given by max(F, F..). For the one-asset fixed strike
lookback call option with payoff (S,,.. — K)*, interest rate r and cost of carry 8, we denote its

price function by W (S, 7; Sz, 1, 0). It can be shown easily that

Viin (S, Fy 73 Sinaw) = FoW (S, T3 Simaws Td, 6%) (F2a)

Vitoat (S, Fy 75 Smaz) = FW (S, T5 Spmaz, T£,7F — q). (F2b)

'To show that there exists a threshold value 77, ,

(S, Simaz) such that the American joint quanto
lookback call should never be exercised at any I whenever 7 > 75 ., (5, Siaz ), we rely on a similar

result for the one-asset fixed strike lookback call option.

Proposition

When S, /S is sufficiently close to 1, there exists some threshold value 7%(S,S),q4:;7,6) such

that it is never optimal to exercise the one-asset fixed strike lookback call option when 7 >

7(S, Smaz; 7, 0).

Remark on the proposition
A comprehensive analysis of the optimal exercise policies of one-asset fixed strike lookback options
has been performed in the papers by Lai and Lim (2003) and Dai and Kwok (2003). Here, we
reproduce similar plots of the exercise boundaries (see Figure 5) so as to reveal the intuition behind
the understanding of the result in the proposition.

Figure 5 shows the plots of the exercise boundaries in the (.5, 5,4, )-plane of the one-asset fixed
strike lookback call option at different times to expiry. The parameter values used in the calculations

are: v = 0.05,6 = 0.1,0 = 0.2 and K = 1. For a given time to expiry 7, the exercise region lies
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above the corresponding exercise boundary. Consider the point B which corresponds to S = 3.85
and S),.. = b, it lies in the continuation region corresponding to 7 = 2 and the exercise region
corresponding to 7 = 0.5. There exists a threshold value 7*(3.85,5), where 0.5 < 7*(3.85,5) < 2,
such that B always stays in the continuation region corresponding to those values of time to expiry
7, where 7 > 7%(3.85,5). The existence of such threshold value 7*(3.85,5) can be justified by the
monotonic properties of the exercise boundaries with respect to 7 and the analytic properties of
the exercise boundaries at 7 = 0 and 7 = c0. Suppose S drops to 1 while 5., remains at 5
(represented by point A), point A always lies in the exercise region corresponding to all values of
time to expiry since it lies above the exercise boundary corresponding to 7 = co. This agrees with
the intuition that when S is far below 5,,,:, the chance of realizing a higher S, is low so that
it is optimal to exercise the lookback option prematurely at all times. With the same value of S
but S, drops to 1.35 (represented by point C'), it may become optimal to exercise the lookback
option only when the option life is sufficiently close to expiry. Both points B and C have a low

value of the ratio S, /S (closer to 1) compared to that of point A.

We now return to the theoretical justification of the exercise policies as depicted in Figure 3.
By observing the results in Eqgs. (F1) and (F2a,b), and together with the Proposition, one can
deduce that when S,,,,/S is sufficently close to 1, there exist T}‘m(& Sinaz) and T;float(57 Simaz)
such that

Viie(S, Fy 75 Smaz) > Fe(Smae — K)T for 7> T}‘m(& Srmaz)
and
Vitoat(S, Fy 75 Smaz) > F(Smae — K)T for 7> T}‘loat(& Simaz)-
Taking 7']?“oim(57 Smaz) = max(T}‘m (S, Smaz), T;float(57 Simaz)), we then have
Vi(S, F, 75 Spmae) > max(F, F)(Spae — K)T for 7> 7']’-“omt(57 Simaz)-

Since the continuation value is higher than the exercise payoff, we can deduce that the Amer-
ican joint quanto lookback call should never be exercised optimally at any value of F when

T > 75t (S5 Smaz)-

oint
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APPENDIX G: PROOF OF THEOREM 5

At F = F, and 7 > 0, conditional on S,,,, > K, the option should remain alive. If otherwise, the
option value is equal to the exercised payoff. Substituting V; = max(F, F.)(Spu. — K) into Eq.
(3.7b), we observe that

ov. o2
a—TJ—LVJ:— TFFQ(S(F_ Fc)(Smaz_K)+(Td_rf)F(Sma$_K)]'{F>Fc}

—rgmax(F, F.)(Spmae — K)| — —o0 when F = F,,

where 6(x) and ]. (-} are the delta function and indicator function, respectively. Since the condition:

ov.
8_J — LV; > 0 is not satisfied, the option should not be optimally exercised at F' = F, and 7 > 0.
-

The whole vertical line F' = F, in the F-7 plane lies in the continuation region.

Next, we would like to show that the exercise regions contain the two horizontal line segments:
{r=0,F < F.} and {r =0, F > F_} in the F-7 plane. Assume the contrary, suppose there exists

a finite interval (F}®

(S,01), Fr (S,01)) at 7 — 01 that lies completely within the continuation
region. Let F' € (Fj,(S,01), F7 (S,01)); by continuity, the option value evaluated at F' and

7 — 0t is max(F, F.)(Sjae — K). Substituting this option value into Eq. (3.7a), we then have

av; —rfF(Spmaz — K) for F' > F,

or

7=0 —1gFo(Spae — K) for F < F,

oV, oV,
In both cases, 3_J‘ < 0, which is in contradiction to the property: 3_J > 0. This would
T = T lr=0
then imply the non-existence of such finite interval. Hence, at time close to expiry and conditional

on Spqx > K, the option should be optimally exercised for any exchange rate F' other than F.

In the F'-7 plane, the vertical line F' = F, is in the continuation region while the two horizontal
line segments: {7 =0, F' < F.} and {7 = 0, F' > F.} are in the exercise regions. We then deduce
(F* > F.and Ff < F.)

that for a fixed value of 7, there exist some critical values F; and Fj; (Fy, I w

low
such that the option should be optionally exercised when /' > F or F' < F7 | (see Figure 3). Due

to the monotonic increasing property of the option value with respect to 7, it can be shown that

Fip (S, 75 Sinae) and Fy

0 (S, T3 Smas) are unique. In other words, the exercise boundary consists of

exactly one branch F;p(& T3 Smaz) that lies completely to the right of the vertical line F' = F,. and
another unique branch F}% (S, 7; Spmaz) to the left of ' = F,. The two branches F, {fp(S , T3 Smaz) and
Fi (S, T3 Smas) intersect at F' = F. when 7 — 01, Further, F;p(SJ;SmM) and F}t (S, 75 Spaz)

are, respectively, monotonically increasing and decreasing with respect to 7.
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Figure 1 'The exercise boundaries of an American maximum exchange rate quanto call option
at different times to expiry 7 are plotted. The parameters of the option model are
rqg = 1y = 0.05,q = 0.02,09 = op = 0.2,p = 0.5 and K = 1. The exercise region
and the continuation region are on the right and left side of the exercise boundary

respectively.
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Figure 2 The value of an American maximum exchange rate quanto call option is plotted against
the correlation coefficient p. The parameters of the option model are 4 = 7y = 0.05,q —
0.02,06 =0 =02, T=0.1and K =5 = F = F,,,. = 1. The option value is seen to

be monotonically decreasing with respect to increasing correlation coefficient.
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Figure 3 The exercise boundaries of an American joint quanto fixed strike lookback call option

at different pairs of values of S and S,,,. are plotted. The parameters in the option
model are rq = r; = 0.05,q = 0.02,09 = op = 02,p = 05 and K = F, = 1.
The solid curve corresponds to S = 1.0, 5,,,. = 1.35; the dashed curve corresponds
to S = 3.85,5,,.c = 5.0; and the dotted curve corresponds to S = 1.0,5,,,. = 5.0.
The exercise boundary consists of two branches with the continuation region lying in
between. The solid curve and dashed curve are seen to level horizontally at high and low
exchange rate F'. Such phenomena reveal that when S = 1.0, S, = 1.35 or S = 3.85,
Simaz = 5.0, there exists threshold value for 7 such that it is never optimal to exercise at
any level of F when 7 is larger than the threshold value. The dotted curve is bounded
by two vertical asymptotes, indicating that F;p(& T, Spaz) and FjE (S, T, Spae) are
defined for all 7 corresponding to S = 1.0, S,,4. = 5.0.
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Figure 4 The value of an American joint quanto fixed strike lookback call option is plotted against

the exchange rate /' at different times to expiry 7. The parameters of the option model
are rq — ry = 0.05,q = 0.02,09 = op = 02,p = 05, K = 1,F, = 8 = 1 and
Simaz = 1.35. For 7 = 0.25 and 7 = 0.5, both option value curves cut tangentially the
intrinsic value lines at two critical exchange rates % (S, 75 Smae) and Fyi (S, 75 Simac)-
However, for 7 = 1, the option value curve never intersects with the intrinsic value lines.
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Figure 5 The figure shows the plots of the exercise boundaries in the (S, 5,4 )-plane of the one-
asset fixed strike lookback call option with varying values of 7. The following parameter
values are used in the calculations: r = 0.05,6 = 0.1,0 = 0.2, K = 1. The points A, B
and C' correspond to (1,5),(3.85,5) and (1,1.35), respectively. For any point lying
within the exercise boundaries corresponding to 7 = 0 and 7 = oo (like points B and
("), there exists a threshold value 7* such that the point lies in the continuation region
corresponding to those values of 7 such that 7 > 7*. Since the point A lies above the
exercise boundary corresponding to 7 = 0o, this indicates that at S =1 and S, = 5,

it is optimal to exercise the lookback call at any value of 7.
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