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Abstract

The saddlepoint approximation formulas provide versatile tools for analytic approximation of
the tail expectation of a random variable by approximating the complex Laplace integral of
the tail expectation expressed in terms of the cumulant generating function of the random
variable. We generalize the saddlepoint approximation formulas for calculating tail expectations
from the usual Gaussian base distribution to an arbitrary base distribution. Specific discussion
is presented on the criteria of choosing the base distribution that fits better the underlying
distribution. Numerical performance and comparison of accuracy are made among different
saddlepoint approximation formulas. Improved accuracy of the saddlepoint approximations to
tail expectations is revealed when proper base distributions are chosen. We also demonstrate
enhanced accuracy of the generalized saddlepoint approximation formulas under non-Gaussian
base distributions in pricing European options on continuous integrated variance under the
Heston stochastic volatility model.

1 Introduction

In many applications in statistics and financial engineering, it is necessary to compute the tail prob-
abilities and tail expectations of random variables using analytic approximation formulas. When the
closed form formulas are not available, the saddlepoint approximation methods have been proven
to be versatile tools in deriving effective analytic approximation formulas for calculating tail prob-
abilities and tail expectations. The success of the saddlepoint approximation approach relies on
the mathematical properties that complex Laplace integrals of the tail probabilities and tail ex-
pectations are expressible in terms of cumulant generating functions. Summary of the saddlepoint
approximation methods and their applications in statistics can be found in the two comprehensive
texts by Jensen (1995) and Butler (2007). Since tail expectation is related to evaluation of discount-
ed expectation of the terminal payoff in a call option, several papers have shown applications of
the saddlepoint approximation methods in pricing various types of options (Rogers and Zane, 1999;
Xiong et al., 2005; Carr and Madan, 2009; Zheng and Kwok, 2014). Also, the expected shortfall
as an effective risk measure is related to the expectation of the tail part of the loss distribution of
a credit portfolio. There has been a growing literature on the use of saddlepoint approximation
methods in the calculations of risk measures. Broda and Paolella (2012) review the applications
of saddlepoint approximations in risk management. Kwok and Zheng (2018) summarize the use
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of saddlepoint approximations in option pricing and credit portfolio calculations. Their text also
provides updated literature on the recent research works on these topics.

In the pioneering work by Daniels (1954), the steepest descent method is used to derive the
saddlepoint approximation formula for calculating the density function of the mean of a large num-
ber of independent and identically distributed (iid) random variables. His saddlepoint formula is
expressed as an asymptotic series in powers of the reciprocal of the square root of number of iid
random variables. Though the original derivation assumes a large sample size, the saddlepoint ap-
proximation formula works well even with a very small sample size, a phenomenon that is called
“small sample asymptotic approximation”. In his later work, Daniels (1980) shows that the normal,
Gamma and inverse normal are the only possible distributions for which the saddlepoint approxi-
mation formulas are exact in calculating the density of the mean of iid random variables. For tail
probabilities, the saddlepoint approximation formula of Lugannani and Rice (1980) is considered
to be the most renowned among all other versions of saddlepoint approximations. Their formula
is derived based on the choice of the Gaussian distribution for approximating the distribution of
the underlying random variable. Daniels (1987) also derives the saddlepoint approximations to
tail probabilities based on the approach of the Edgeworth expansion of the exponentially tilted
density recentered at the mean. Wood et al. (1993) extend the Lugannani-Rice tail probability
approximation formula to the non-Gaussian base distribution. Booth and Wood (1995) illustrate
with an example in which the performance of the Lugannani-Rice formula under the Gaussian base
distribution can be rather poor. Their modified approximation formula, in which the Gaussian base
is replaced by an inverse Gaussian base, gives enhanced accuracy. In the performance assessment
of the use of the Lugannani-Rice formula in credit portfolio calculations under the CreditRisk+

model, Annaert et al. (2007) raise the concern about the potential failure of the Lugannani-Rice
formula when the higher moments of the credit loss distributions become more significant. These
works motivate us to explore whether an improved accuracy of the saddlepoint approximation to
tail expectation can be achieved when a proper base distribution other than the Gaussian distribu-
tion is chosen. An earlier success on the use of non-Gaussian base distribution to option pricing is
presented by Carr and Madan (2009). Employing the share measure where the asset price is used as
a numeraire, they manage to represent the European call prices as tail probabilities. They then use
Wood et al.’s saddlepoint approximation formula for tail probabilities together with the choice of
the Gaussian less exponential distribution as the base distribution to price European vanilla options
under various types of Lévy processes. However, their use of the share measure is only applicable
for vanilla options. For more exotic options, like options on continuous integrated variance, option
prices can only be expressed as tail expectations rather than tail probabilities.

As one of the earlier works on extending the saddlepoint approximation to pricing options
in financial engineering, Martin (2006) proposes a crude saddlepoint approximation formula for
calculating tail expectation. Huang and Oosterlee (2011) apply the Edgeworth expansion method
to derive the saddlepoint approximations to tail expectations under the Gaussian base distribution
(implicitly implied by their use of the local quadratic approximation of the exponential kernel).
Zheng and Kwok (2014) derive the saddlepoint approximation to tail expectation via differentiating
the Lugannani-Rice formula with respect to the tilted-parameter in the Esscher exponential tilting
procedure. Though the two approaches employed in deriving the Huang-Oosterlee formula and
Zheng-Kwok formula for tail expectations are very different, it is quite surprising that the analytic
expressions of the two saddlepoint approximation formulas are identical under the Gaussian base
distribution. However, as shown in our later discussion, the saddlepoint approximation formulas
using these two approaches may differ under a non-Gaussian base distribution.

Though the saddlepoint approximations to tail probabilities under arbitrary base distributions
have been known in the literature, the corresponding saddlepoint approximation formulas for tail
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expectations have not been found. In this paper, we generalize the saddlepoint approximation for-
mulas for calculating tail expectations from the usual Gaussian base distribution to an arbitrary
base distribution. We also discuss the criteria of choosing the base distribution that fits better
the underlying distribution. This paper is organized as follows. In the next section, we derive two
different saddlepoint approximation formulas for tail expectations under arbitrary base distribu-
tions using the Zheng-Kwok approach and Huang-Oosterlee method. In Section 3, we explain why
matching of the fourth order moment is an appropriate criterion for finding the base distribution
that matches better the underlying distribution. In Section 4, we present numerical tests that were
performed to assess the performance of the saddlepoint approximation formulas for tail expectation-
s under non-Gaussian base distributions. We also show the use of the saddlepoint approximation
formulas for tail expectations under non-Gaussian base distributions to price European options on
continuous integrated variance under the Heston stochastic volatility model. The non-Gaussian
base distributions are chosen to be (i) Gaussian less exponential as proposed by Carr and Madan
(2009), (ii) Gamma distribution. Summary and conclusive remarks are presented in the last section.

2 Saddlepoint Approximations to Tail Expectation under Non-
Gaussian Base Distribution

Recall that the tail expectation of the random variable X above a fixed threshold K is defined
as E[(X − K)+]. In the option pricing literature in finance, the tail expectation is related to the
undiscounted call option price with X as the terminal asset price and K as the strike price. Martin
(2006) proposes the decomposition of the Laplace integral representation of E[(X−K)+] as follows:

E[(X −K)+] = E[X1{X>K}]−KP [X > K]

=
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z)−zK

z
[κ′(z)−K] dz

=
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z)−zK

z
(µ−K) dz +

1

2πi

∫ ξ+i∞

ξ−i∞
eκ(z)−zK κ′(z)− µ

z
dz,

(2.1)

where κ(z) is the cumulant generating function (cgf) and the mean µ = E[X] = κ′(0). The domain
of analyticity of κ(z) is the vertical strip {z ∈ C : Γ− < Re z < Γ+} and the vertical Bromwich path
is chosen such that 0 < z < Γ+. Let f(K) and F (K) denote the density function and distribution
function of X, respectively, and observe that

f(K) =
1

2πi

∫ ξ+i∞

ξ−i∞
eκ(z)−zK dz,

P [X > K] = 1− F (K) =
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z)−zK

z
dz.

Provided that µ ̸= K, Martin (2006) proposes the approximation of freezing κ′(z)−µ
z at the saddle-

point ẑ, where ẑ solves the saddlepoint equation:

κ′(z) = K.

This leads to the saddlepoint approximation to tail expectation in terms of the density function
and distribution function as follows:

E[(X −K)+] ≈ (µ−K)P [X > K] +
K − µ

ẑ
f(K), µ ̸= K. (2.2)
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Higher order saddlepoint approximation to tail expectation under the Gaussian base distribution
have been obtained by later works of Huang and Oosterlee (2011) and Zheng and Kwok (2014). We
would like to extend their saddlepoint approximation formulas to non-Gaussian base distribution.

2.1 Zheng-Kwok approach

Zheng and Kwok (2014) apply the exponential tilting technique to find the relation between tail
expectation and tail probability. The distribution F (x; θ) of the θ-tilted distribution of X is related
to F (x) by

dF (x; θ) = eθx−κ(θ)dF (x).

The cgf of the θ-tilted distribution κθ(z) is related to κ(z) via

κθ(z) = κ(z + θ)− κ(θ).

When θ = 0, we observe κ(0) = 0 and recover F (x; 0) = F (x). The decomposition in eq.(2.1)
reveals an important relation between E[(X −K)+] and the derivative of F (K; θ) with respect to
θ. First, we observe

1− F (K; θ) =
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z+θ)−κ(θ)−zK

z
dz, 0 < ξ < Γ+ − θ.

Differentiating both sides of the above equation with respect to θ and setting θ = 0, we obtain

−∂F (K; θ)

∂θ
|θ=0 =

1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z)−zK

z

[
κ′(z)− κ′(0)

]
dz.

Combining these results and observing the decomposition in eq.(2.1), the tail expectation is given
by

E[(X −K)+] = [κ′(0)−K][1− F (K)]− ∂F (K; θ)

∂θ
|θ=0

≈ (µ−K)P [X > K]− ∂F̃ (K; θ)

∂θ
|θ=0.

(2.3)

Here, we approximate F (K; θ) by F̃ (K; θ), which is taken to be the saddlepoint approximation
to the distribution function of the exponentially θ-tilted distribution. It is instructive to compare
the respective last term in the two decomposition formulas in eqs.(2.2) and (2.3), which reveal
different orders of the saddlepoint approximation. Based on eq.(2.3), the saddlepoint approximation
to tail expectation under the Gaussian base distribution can be obtained by differentiation of the
corresponding Lugannani-Rice formula for tail probability [see eq.(2.28) in Kwok and Zheng (2018)].

The main objective of this paper is to extend the saddlepoint approximation formula for tail
expectation to an arbitrary base distribution, whose cgf is denoted by κ0(z). We follow a similar
procedure of applying the modified Legendre-Fenchel transformation based on κ0(z) (Wood et al.,
1993), where the transformation of variables from z to w is defined by

κ0(w)− wκ′0(ŵ) = κ(z)− zK, (2.4)

where ŵ is first determined via the solution of the following equation

κ0(w)− wκ′0(w) = κ(ẑ)− ẑK. (2.5)

Here, ẑ is the saddlepoint that solves κ′(z) = K. Correspondingly, z = ẑ is matched to w = ŵ
under the transformation (2.4). According to Wood et al. (1993), there are two roots for ŵ, one
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positive and the other negative when E[X] ̸= K. The rule of thumb is to choose ŵ to have the
same sign as that of ẑ. When E[X] = K, we have the degenerate case where ŵ = 0. Since we have
to deal with the exponentially θ-tilted distribution of X whose cgf is κθ(z) = κ(z + θ) − κ(θ), the
equation for the transformation of variables has to be modified accordingly based on κθ(z).

According to eq.(2.3), it is necessary to compute ∂F̃ (K;θ)
∂θ , where F̃ (K; θ) is the saddlepoint

approximation to the distribution function of the exponentially θ-tilted distribution using the base
distribution with cgf κ0(z). The expression of F̃ (K; θ) is given in Appendix A [see eq.(A.2)].

Let f0(x) and F0(x) denote the respective density function and distribution function of the base
distribution with cgf κ0(z). For E[X] ̸= K, the saddlepoint approximation to the tail expectation
E[(X −K)+] based on κ0(z) is found to be

E[(X −K)+]

≈ [κ′(0)−K][1− F̃ (K)]

+ f0
(
κ′0(ŵ)

){
[K − κ′(0)]

[
1

ŵ
− 1

ŵ3κ′′0(ŵ)
− κ′′′0 (ŵ)

2ŵκ′′0(ŵ)
3
2 µ̂

]
+

√
κ′′0(ŵ)

ẑµ̂

}

+ f ′
0

(
κ′0(ŵ)

)
[K − κ′(0)]

[
1

ŵ2
−
√

κ′′0(ŵ)

ŵµ̂

]
, E[X] ̸= K,

(2.6)

where ŵ is the solution to eq.(2.5), µ̂ = ẑ
√

κ′′(ẑ), ẑ is the saddlepoint that satisfies κ′(z) = K and

F̃ (K) = F0(κ
′
0(ŵ)) + f0(κ

′
0(ŵ))

{
1

ŵ
− 1

ẑ

[
κ′′0(ŵ)

κ′′(ẑ)

] 1
2

}
.

Here F̃ (K) is the saddlepoint approximation formula of tail probability proposed in Wood et al.
(1993). The details of the proof of eq.(2.6) are presented in Appendix A.

When E[X] = K, the above saddlepoint approximation formula (2.6) becomes degenerate since
ẑ = ŵ = 0. By considering the asymptotic limits under ŵ → 0 and ẑ → 0, the corresponding
saddlepoint approximation formula for tail expectation becomes (see Appendix A for details)

E[(X −K)+] ≈ f0(κ
′
0(0))

{ √
κ′′0(0)

24
√
κ′′(0)

[
κ′′′(0)2

κ′′(0)2
− κ′′′′(0)

κ′′(0)

]

+

√
κ′′(0)

8
√

κ′′0(0)

[
κ′′′0 (0)

2

κ′′0(0)
2
− κ′′′′0 (0)

κ′′0(0)

]
+

1

12

κ′′′0 (0)

κ′′0(0)

κ′′′(0)

κ′′(0)
+
√

κ′′0(0)κ
′′(0)

}

+
f ′
0(κ

′
0(0))

√
κ′′(0)κ′′0(0)

6

[
κ′′′(0)

κ′′(0)
3
2

− κ′′′0 (0)

κ′′0(0)
3
2

]
, E[X] = K.

(2.7)

2.2 Huang-Oosterlee approach

Huang and Oosterlee (2011) apply the local quadratic approximation to the exponent κ(z)−Kz in
the Laplace integral to derive the saddlepoint approximation to tail expectation under the Gaussian
base distribution. By following a similar procedure of applying the modified Legendre-Fenchel
transformation defined in eq.(2.4), it is also possible to extend the Huang-Oosterlee approach to
non-Gaussian base distribution. Instead of using the Laplace integral representation of E[(X−K)+]
in eq.(2.1), we consider an alternative Laplace integral for tail expectation [see eq.(1.13c) in Kwok
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and Zheng (2018)] and performing the modified Legendre-Fenchel transformation (2.4). This gives

E[(X −K)+] =
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z)−zK

z2
dz =

1

2πi

∫ ξ+i∞

ξ−i∞

eκ0(w)−wκ′
0(ŵ)

z2
dz

dw
dw, (2.8)

where ŵ solves eq.(2.5). Differentiating eq.(2.4) by w on both sides once and twice, and observing
K = κ′(ẑ), we obtain the following equations:

κ′0(w)− κ′0(ŵ) = [κ′(z)− κ′(ẑ)]
dz

dw
,

κ′′0(w) = [κ′(z)− κ′(ẑ)]
d2z

dw2
+ κ′′(z)

(
dz

dw

)2

.

At w = ŵ (or equivalently, z = ẑ), we observe κ′(z)− κ′(ẑ) = 0. Substituting this relation into the
last equation gives

dz

dw
|w=ŵ =

√
κ′′0(ŵ)√
κ′′(ẑ)

. (2.9)

On the other hand, at w = 0 (or equivalently, z = 0), we obtain

dw

dz
|z=0 =


√

κ′′(0)√
κ′′
0 (0)

if ẑ = 0

κ′(ẑ)−κ′(0)
κ′
0(ŵ)−κ′

0(0)
if ẑ ̸= 0

. (2.10)

We consider the Laurent expansion at w = 0 of the factor 1
z2

dz
dw inside the Bromwich integral (2.8):

1

z2
dz

dw
= A(w) +

A1

w
+

A2

w2
+

∞∑
n=2

An

wn
,

where A(w) is the non-singular part. By choosing a closed contour C around the pole w = 0 in
the w-plane and C ′ is the transformed contour in the z-plane, and assuming ẑ ̸= 0 (equivalently,
E[X] ̸= K), the Laurent coefficients are found to be

A1 =
1

2πi

∮
C

1

z2
dz

dw
dw =

1

2πi

∮
C′

1

z2
dz = 0,

A2 =
1

2πi

∮
C

1

z2
dz

dw
w dw =

1

2πi

∮
C′

w

z2
dz = lim

z→0

w

z
=

dw

dz
|z=0 =

κ′(ẑ)− κ′(0)

κ′0(ŵ)− κ′0(0)
,

The above relations are derived based on the L’Hôspital’s rule and eq.(2.10). Similar to the evalu-
ation of A1, it is straightforward to show that An = 0, n > 2.

In the next step to derive the saddlepoint approximation to the tail expectation formula, we
freeze the non-singular part A(w) at w = ŵ. This is justifiable as an acceptable approximation
since the principal contribution to the complex integral arises from the singular part. By virtue of
eqs.(2.9-2.10), the value of A(w) is approximated by

A(w) ≈ A(ŵ) =
1

z2
dz

dw
|w=ŵ,z=ẑ −

A2

ŵ2
=

√
κ′′0(ŵ)

ẑ2
√

κ′′(ẑ)
− κ′(ẑ)− κ′(0)

ŵ2 [κ′0(ŵ)− κ′0(0)]
.

Let Y denote the base distribution random variable whose cgf is given by κ0(w), that is, κ0(w) =
lnE[ewY ]. Combining all the above relations and observing

f0
(
κ′0(ŵ)

)
=

1

2πi

∫ ξ+i∞

ξ−i∞
eκ0(w)−wκ′

0(ŵ) dw,
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E
[(
Y − κ′0(ŵ)

)+]
=

1

2πi

∫ ξ+i∞

ξ−i∞

eκ0(w)−wκ′
0(ŵ)

w2
dw,

we obtain the following saddlepoint approximation formula for tail expectation under the non-
Gaussian base distribution whose cgf is κ0(z):

E[(X −K)+] =
1

2πi

∫ ξ+i∞

ξ−i∞

eκ0(w)−wκ′
0(ŵ)

z2
dz

dw
dw

≈ A(ŵ)

2πi

∫ ξ+i∞

ξ−i∞
eκ0(w)−wκ′

0(ŵ) dw +
A2

2πi

∫ ξ+i∞

ξ−i∞

eκ0(w)−wκ′
0(ŵ)

w2
dw

= f0
(
κ′0(ŵ)

){ √
κ′′0(ŵ)

ẑ2
√

κ′′(ẑ)
− κ′(ẑ)− κ′(0)

ŵ2 [κ′0(ŵ)− κ′0(0)]

}

+ E
[(
Y − κ′0(ŵ)

)+] κ′(ẑ)− κ′(0)

κ′0(ŵ)− κ′0(0)
, E[X] ̸= K.

(2.11)

In the degenerate case E[X] = K, we compute the asymptotic limits of A(ŵ) and A2 as ŵ →
0, ẑ → 0. The asymptotic results are given by

lim
ẑ→0,ŵ→0

A2 =

√
κ′′(0)√
κ′′0(0)

,

lim
ẑ→0,ŵ→0

A(ŵ) =
1

24

{√
κ′′(0)

κ′′0(0)

[
κ′′′′0 (0)

κ′′0(0)
− κ′′′0 (0)

2

κ′′0(0)
2

]
−

√
κ′′0(0)

κ′′(0)

[
κ′′′′(0)

κ′′(0)
− κ′′′(0)2

κ′′(0)2

]}
.

The corresponding degenerate saddlepoint approximation formula for tail expectation under κ0(z)
becomes

E[(X −K)+]

≈ f0 (κ
′
0(0))

24

{√
κ′′(0)

κ′′0(0)

[
κ′′′′0 (0)

κ′′0(0)
− κ′′′0 (0)

2

κ′′0(0)
2

]
−

√
κ′′0(0)

κ′′(0)

[
κ′′′′(0)

κ′′(0)
− κ′′′(0)2

κ′′(0)2

]}

+ E
[(
Y − κ′0(0)

)+] √κ′′(0)√
κ′′0(0)

, E[X] = K.

(2.12)

The saddlepoint approximation formulas for tail expectation derived from the two approaches
[Zheng-Kwok formulas (2.6, 2.7) and Huang-Oosterlee formulas (2.11, 2.12)] are in general different

under non-Gaussian base distribution. When κ0(w) = w2

2 (Gaussian base distribution), the two
saddlepoint approximation formulas to tail expectation derived from the Zheng-Kwok approach
and Huang-Oostelee reduce to the same formula. Another interesting case of equality of the two
saddlepoint approximation formulas is shown in Section 4.

3 Criteria for Choosing the Base Distribution

The next issue is to explore how to make the judicious choice of the base distribution that has
better fit of the underlying distribution so as to achieve improved accuracy of the saddlepoint ap-
proximation to tail expectation. We follow a similar criterion for choosing the base distribution
as proposed by Wood et al. (1993), which is related to two invariant properties of the saddlepoint
approximation formulas under linear transformation. For a random variable X, we define its linear
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transformation to be LX = aX + b for some constants a > 0, b ∈ R. Suppose a random variable
Y is an appropriate choice as the base distribution, we should expect that LY produces the same
saddlepoint approximation result. We write ÊY [(X − K)+] as the saddlepoint approximation to
EY [(X −K)+]. The invariant properties under linear transformation are summarized in the follow-
ing lemmas.

Lemma 3.1 For any linear transformation LX = aX+ b, where a > 0, the saddlepoint approx-
imation to tail expectation E[(X −K)+] under the two base distributions Y and LY are identical.
That is

ÊY [(X −K)+] = ÊLY [(X −K)+], (3.1)

for any X, Y and K.

Lemma 3.2 The saddlepoint approximation preserves the linear property under the linear
transformation LX = aX + b, where

ÊY [(LX − LK)+] = aÊY [(X −K)+], a > 0, (3.2)

for anyX, Y andK. When we scale the underlying random variable under the linear transformation,
the saddlepoint approximation formula is scaled accordingly.

The proof of Lemma 3.1 is presented in Appendix B while that of Lemma 3.2 can be done in
a similar manner. As a corollary of the lemmas, suppose we match some statistics between a pair
of random variables X and Y , like mean, variance or skewness, the target statistic should preserve
the invariant properties under the linear transformation L as stated in the above two lemmas.

We use the Gamma distribution Gamma(α, β) and inverse Gaussian IG(λ, µ) distribution as
examples to show how to choose the base distribution parameters. These two distributions are
chosen due to their wide range of applications and availability of closed form formulas of their density
function, cumulative distribution function (cdf), tail probability, tail expectation and cumulant
generating function (cgf). The properties of these two two-parameter distributions are listed below:

(i) If X ∼ Gamma(α, β), then its density f(x), cdf F (x), and cgf κ(z) are given by

f(x;α, β) =
1

Γ(α)βα
xα−1e

− x
β , (3.3a)

F (x;α, β) =
1

Γ(α)
Γ(α,

x

β
), (3.3b)

κ(z;α, β) = −α ln(1− βz), (3.3c)

where Γ(x) is the Gamma function and Γ(α, x) =
∫ x
0 ettα−1 dt is the lower incomplete Gamma

function.

(ii) If X ∼ IG(λ, µ), then its density f(x), cdf F (x), and cgf κ(z) are given by

f(x;λ, µ) =

√
λ

2πx3
e
−λ(x−µ)2

2µ2x , (3.4a)

F (x;λ, µ) = Φ

(√
λ

x
(
x

µ
− 1)

)
+ e

2λ
µ Φ

(
−
√

λ

x
(
x

µ
+ 1)

)
, (3.4b)

κ(z;λ, µ) =
λ

µ

(
1−

√
1− 2µ2z

λ

)
, (3.4c)
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where Φ(.) is the cdf of the standard normal distribution.
The choice of the scale parameter (β for the Gamma distribution and µ for the IG distribution)

can be arbitrary, which can be seen from the following property. For any c > 0, we observe

if X ∼ Gamma(α, β), then Y = cX ∼ Gamma(α, cβ);

if X ∼ IG(λ, µ), then Y = cX ∼ IG(cλ, cµ).

By virtue of Lemma 3.1, the saddlepoint approximation results remain unchanged for different scale
parameters. We are more concerned with the choice of the shape parameter. One possible approach

is to match the higher order standardized cumulants ξi(z) =
κ(i)(z)

κ′′(z)
i
2
, for i ≥ 3, where κ(i)(z) is the ith

order derivatives of κ(z). The choice of the matching target comes from two considerations. First,
it should be independent of a linear transformation due to the invariant property stated in Lemma
3.1. We motivate the argument using the following intuition. When z = 0, ξ3(0) and ξ4(0) are the
skewness and excess kurtosis of the corresponding random variable respectively. When z = 0 or
z = ẑ, ξi(z) remains unchanged after a linear transformation. We prefer ξ4(ẑ) to ξ3(ẑ) as the choice
of the matching criterion.

We now present the matching method used in our numerical tests, where the Gamma distribution
or the inverse Gaussian distribution is chosen as the base distribution. For the Gamma distribution,
its fourth order standardized cumulant is given by ξ4(z) =

6
α , which is independent of z. The choice

of α should be taken to be

α =
6κ′′(ẑ)2

κ′′′′(ẑ)
, (3.5)

where κ(z) is the cgf of underlying distribution and ẑ is the solution of the saddlepoint equation:
κ′(z) = K. The choice of β can be any arbitrary positive number. Recall that the support of the cgf
of the Gamma distribution is (−∞, 1

β ), so it is convenient to fix β so that we have a fixed boundary
in our numerical procedure.

To compute the solution to eq.(2.5), we introduce the Lambert W -function, where W (x) is the
solution of WeW = x. The two real valued branches of W (x) are the principal branch W0(x) and
the lower branch W−1(x), both are defined for real number x > −1

e . For x ≥ 0, there exist a unique
solution for the equation WeW = x, which is given by W0(x). There are two roots for the case
−1

e < x < 0, one of which is W0(x) ≥ −1 and the other one is W−1(x) < −1. In terms of W0 and
W−1, the solution to (2.5) is given by

ŵ =


1
β + 1

βW−1

(
− 1

e
c
a+1

) if ẑ > 0,

1
β + 1

βW0

(
− 1

e
c
a+1

) if ẑ ≤ 0,
(3.6)

where c = ẑK − κ(ẑ).
For the inverse Gaussian distribution, we have ξ4(z) =

15µ
λ

1√
1− 2µ2z

λ

. The solution to eq.(2.5) is

given by

ŵ =
λ(1− x2)

2µ2
, (3.7)

where c = ẑK − κ(ẑ) and

x =
λ+ µc− sgn(ẑ)

√
(λ+ µc)2 − λ2

λ
.
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The matching equation is given by

ξ4(ŵ) =
15

a+ c− sgn(ẑ)
√

(a + c)2 − a2
=

κ′′′′(ẑ)

κ′′(ẑ)2
, (3.8)

where a = λ
µ and κ(z) is the cgf of the underlying distribution. When the right-hand side is

positive, the above equation admits a unique positive solution for a, which serves as the choice of
the shape parameter λ for a fixed value of the scale parameter µ. The positivity of a indicates that
the underlying distribution would be fat tailed. The requirement is reasonable since neither the
Gamma distribution nor the inverse Gaussian distribution would generate a random variable with
thin tail.

4 Numerical Tests

To illustrate enhanced numerical accuracy of the two saddlepoint formulas for calculating tail ex-
pectation under non-Gaussian base distribution, we choose the Gamma distribution and inverse
Gaussian distribution alternatively as the underlying random variable and base distribution. These
choices take advantage that the Gamma distribution and inverse Gaussian distribution admit closed
form formulas for density, tail probability, and tail expectation. As a remark, though Daniels (1980)
shows that the saddlepoint approximation to density function becomes exact for the three distri-
butions: Gaussian, Gamma and inverse Gaussian, our numerical tests show that exactness of the
saddlepoint approximation to tail expectation fails under these three distributions. We recall that
Wood et al. (1993) performed similar numerical tests on assessment of accuracy of saddlepoint
approximation to tail probabilities under various choices of the base distributions.

4.1 Tail expectation of the inverse Gaussian distribution

We take the underlying random variable to follow the inverse Gaussian distribution, IG(λ, µ). The
analytic formula for its tail expectation is given by

E[(X −K)+] = µ

[
Φ

(
−
√

λ

K
(
K

µ
− 1)

)
+ e

2λ
µ Φ

(
−
√

λ

K
(
K

µ
+ 1)

)]
−K[1− F (K;λ, µ)], (4.1)

where the distribution function F (K;λ, µ) is given by eq.(3.4b). In our numerical tests to demon-
strate numerical accuracy of the saddlepoint approximation formulas, we choose the Gamma dis-
tribution as our base distribution. The tail expectation of the Gamma distribution Gamma(α, β)
is given by

E[(X −K)+] = αβ[1− F (K;α+ 1, β)]−K[1− F (K;α, β)], (4.2)

where the distribution function F (K;α, β) is given by eq.(3.3b). In our numerical calculations,
the parameters of the inverse Gaussian random variable are chosen to be µ = 2 and λ = 5 or
λ = 15. The corresponding excess kurtosis equals 6 when λ = 5 and equals 2 when λ = 15. The
scale parameter β of the Gamma distribution is fixed at β = 1, while the shape parameter α is
determined using eq.(3.5) according to the matching criterion of the base distribution. In Table
1, we present the corresponding ξ4(ẑ), matched value of the shape parameter α, and saddlepoint
approximation to tail expectation of the inverse Gaussian distribution at varying levels of moneyness
and excess kurtosis using various base distributions. Moneyness is defined to be the ratio of K to
the mean µ of the underlying. The relative errors of calculating tail expectation at different levels
of moneyness and excess kurtosis using various base distributions are plotted in Figure 1.
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Table 1: Saddlepoint approximation to tail expectation of the inverse Gaussian distribution at
different levels of moneyness and excess kurtosis. “Exact” denotes the exact value of E[(X −K)+],
“Gaussian” denotes the saddlepoint approximation results calculated using the standard Gaussian
distribution as the base, “Gamma1” and “Gamma2” denote the saddlepoint approximation results
calculated using formulas (2.6-2.7) and (2.11-2.12) using the Gamma distribution, respectively.

Moneyness Exact ξ4(ẑ) α Gaussian Gamma1 Gamma2

Excess Kurtosis: 6

0.2 1.600192 1.2 5 1.600161 1.600166 1.600166
0.5 1.045480 3 2 1.042241 1.043045 1.043045
0.8 0.646020 4.8 1.25 0.637393 0.640023 0.640023
1.0 0.464652 6 1 0.454163 0.457579 0.454579
1.2 0.333945 7.2 0.8333 0.323080 0.326633 0.326633
1.5 0.204054 9 0.667 0.194332 0.197432 0.197432

Excess Kurtosis: 2

0.2 1.600000 0.4 15 1.600000 1.600000 1.600000
0.5 1.004326 1 6 1.004253 1.004267 1.004267
0.8 0.501472 1.6 3.75 0.500864 0.500996 0.500996
1.0 0.282473 2 3 0.281634 0.281818 0.281818
1.2 0.149724 2.4 0.2.5 0.148926 0.149080 0.149080

Figure 1: Comparison of the relative errors for calculating tail expectation of the inverse Gaussian
distribution with respect to different levels of moneyness. “Normal” is the relative error using
the standard Gaussian base, “Gamma (1)” and “Gamma (2)” are the relative errors computed by
formulas (2.6-2.7) and (2.11-2.12) using the Gamma base distribution, respectively.

(a) Excess Kurtosis: 6 (b) Excess Kurtosis: 2

The numerical results in Table 1 and the plots of the relative errors in Figure 1 reveal enhanced
accuracy of the saddlepoint approximation to tail expectation using the Gamma base distribution
that fits better the underlying distribution when compared with the saddlepoint approximation
using the usual Gaussian base distribution. Numerical accuracy of the saddlepoint approximation
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is well within 1% unless moneyness is high and/or kurtosis is significant. It is interesting to ob-
serve that the numerical results calculated from eqs. (2.6-2.7) and (2.11-2.12) are the same, though
the analytic forms of the two saddlepoint approximation formulas look very differently. Besides the
choice of the Gaussian distribution as the base distribution, the numerical tests reveal that the Gam-
ma distribution is another choice of the base distribution that the two saddlepoint approximation
formulas for calculating tail expectation give the same numerical results.

4.2 Tail expectation of the Gamma distribution

Next, we choose the Gamma distribution as the underlying distribution and the inverse Gaussian
distribution as the base distribution. The moneyness, defined as the ratio of K to the mean, is
chosen in such a way that K equals 95% percentile of the underlying. Moneyness is calculated
by a root finding procedure according to the cdf of Gamma(α, β). Recall that the excess kurtosis
of Gamma(α, β) is given by α

6 , which is independent of ẑ. The scale parameters of the Gamma
distribution and inverse Gaussian distribution are fixed at β = 2 and µ = 1, respectively. The
shape parameter λ of the inverse Gaussian base distribution is determined according to eq.(3.8). In
Table 2, we present the moneyness, the matched value of the shape parameter λ, the saddlepoint
approximation to tail expectation of the Gamma distribution using various base distributions at
varying levels of kurtosis and α. The relative errors of calculating tail expectation at different levels
of excess kurtosis using various base distributions are plotted in Figure 2.

Table 2: Saddlepoint approximation to tail expectation of the Gamma distribution at different
levels of kurtosis. “Kurtosis” is the excess kurtosis of the underlying random variable.“Exact”
denotes the exact value of E[(X−K)+], and “Gaussian” denotes the saddlepoint approximation with
the standard Gaussian base. Also, “IG1” and “IG2” denote the saddlepoint approximation results
calculated based on formulas (2.6-2.7) and (2.11-2.12) using the inverse Gaussian base distribution,
respectively.

Kurtosis α Moneyness Exact λ Gaussian IG1 IG2

1.5 4 1.93841 0.141685 14.70357 0.141632 0.141726 0.142129
2 3 2.09860 0.130593 11.50996 0.130514 0.130666 0.131236
3 2 2.37193 0.117409 8.188189 0.117260 0.117553 0.118472
6 1 2.99575 0.099999 4.619616 0.099501 0.100356 0.102372
12 0.5 3.84148 0.087028 2.617306 0.085091 0.087455 0.091776
18 0.333 4.41982 0.080686 1.869813 0.076383 0.080576 0.087318
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Figure 2: Comparison of the relative errors for calculating tail expectation against different levels
of kurtosis. “Normal” is the relative error using the standard Gaussian base, “IG (1)” and “IG(2)”
are the relative errors computed by formulas (2.6-2.7) and (2.11-2.12) using the inverse Gaussian
base distribution, respectively.

As revealed in Table 2 and Figure 2, the Zheng-Kwok saddlepoint approximation formulas (2.6-
2.7) provide the best numerical accuracy compared to other saddlepoint approximation formulas.
In this numerical example, we concentrate on the tail event (K = 95% percentile) and the excess
kurtosis of the underlying distribution is relatively high. Under this scenario, the choice of the
matching criterion is quite crucial for achieving high level of numerical accuracy. Numerical tests
show that matching ξ4(0) rather than ξ4(ẑ) results in worse accuracy when formulas (2.11-2.12)
are used even when compared with the use of the standard Gaussian base. The Zheng-Kwok
saddlepoint approximation formulas (2.6-2.7) provide very good accuracy even under high level of
kurtosis. Though the analytic form of the Huang-Oosterlee saddlepoint approximation formulas
(2.11-2.12) are simpler, the saddlepoint approximation formulas do not provide enhanced accuracy.

4.3 Pricing of European call option on integrated variance

We demonstrate the use of the saddlepoint approximation formulas (2.6-2.7) for tail expectation
under non-Gaussian base to price European call option on continuous integrated variance under the
Heston stochastic volatility model (Sepp, 2008). The terminal payoff of the European call option is
given by max(IT −K, 0), where K is the strike price and IT is the continuous integrated variance
of the stock price process St over [0, T ] as defined by

IT =

∫ T

0
vt dt. (4.3)

Here, vt is the instantaneous variance of the stock price process.
To price an option on continuous integrated variance, it is necessary to specify the joint dynamics

of the stock price process St and its instantaneous variance vt under a risk neutral measure Q. In
this numerical example, we adopt the Heston stochastic volatility model. The stochastic dynamic
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equations for St and vt under Q are specified by

dSt

St
= r dt+

√
vt(ρ dW v

t +
√

1− ρ2 dWt) (4.4a)

dvt = κ(θ − vt) dt+ ε
√
vt dW

v
t , (4.4b)

where ρ is the correlation coefficient between the Brownian motions W v
t and Wt, θ is the mean

reversion level, κ is the mean reversion speed, r is the riskfree interest rate and ε is the volatility of
variance. By the risk neutral valuation principle, the time-t value of the European call option on
integrated variance is given by

ct = e−r(T−t)EQ
t [max(IT −K, 0)] . (4.5)

Here, It is the integrated variance. We define the moment generating function of the integrated
variance by

U(vt, It, t; z, T ) = EQ
t [e

zIT ], z is a complex-valued parameter. (4.6a)

We write τ = T − t as the time to expiry. By the Feynman-Kac Theorem, U(vt, It, t; z, T ) satisfies
the following partial differential equation:

∂U

∂τ
= κ(θ − v)

∂U

∂v
+

ε2v

2

∂2U

∂v2
+ v

∂U

∂I
. (4.6b)

Thanks to the affine structure of the Heston stochastic volatility model, U(vt, It, t; z, T ) admits
solution in the exponential affine form, where

U(vt, It, t; z, T ) = exp(B(τ)vt + zIt + Γ(τ)), τ = T − t.

The solution to B(τ) and Γ(τ) are found to be [see eq.(B.4) in Zheng and Kwok (2014)]

B(τ) =
2z(1− e−ζτ )

ξ+e−ζτ + ξ−
(4.7a)

Γ(τ) = −κθ

ε2

(
ξ+τ + 2 ln

ξ+e
−ζτ + ξ−
2ζ

)
, (4.7b)

where ζ =
√

κ2 − 2ε2u and ξ± = ζ ∓ κ. Once we have obtained the moment generating function of
IT , its cgf is given by

κI(z) = logU(vt, It, t; z, T ). (4.8)

Once κI(z) is available, we can use the saddlepoint approximation formulas (2.6-2.7) to price the
European call option on continuous integrated variance.

We may express the call price formula as a complex Bromwich integral. Suppose that κI(z) is
analytic in some vertical strip: {z ∈ C : α− < Re z < α+}, where α− < 0 and α+ > 0. It can be
shown that the call option price ct admits the following integral representation [see eq.(1.13c) in
Kwok and Zheng (2018)]:

ct =
e−r(T−t)

2π

∫ γ+i∞

γ−i∞

eκI(z)−zκ

z2
dz, γ ∈ (0, α+). (4.9)

In our numerical test on the performance of accuracy of the saddlepoint approximation formula
(2.6) in pricing European call option on continuous integrated variance, we used the set of parameter
values shown in Table 3.
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Table 3: List of parameter values in the Heston stochastic volatility model used in pricing European
call option on continuous integrated variance.

κ θ ε ρ
√
vt

3.46 (0.0894)2 0.14 -0.82 0.087

In addition, we take S0 = 1, τ = 1 and r = 3.19%.
We performed numerical valuation of the value of the European call option on continuous inte-

grated variance using the saddlepoint approximation formulas (2.6-2.7) under the standard Gaussian
base, Gamma base and Gaussian less exponential base (Carr and Madan, 2009). The Gaussian less
exponential base takes the form

Z +
1

λ
− Y,

where Z is a standard Gaussian variable and Y is a positive exponential with parameter λ. We
chose the Gamma distribution with α = 5 and β = 1 and the Gaussian less exponential distribution
with λ = 3. We also computed the option value using direct numerical integration of the complex
integral price formula (4.9) as the benchmark comparison. As revealed by the pricing results of
the one-year European call option on continuous realized variance in Table 4, we observe enhanced
numerical accuracy using the saddlepoint approximation under non-Gaussian base distribution when
compared with the results under the Gaussian base distribution. The percentage errors are typically
within 0.1%. The Gaussian less exponential base proposed by Carr and Madan (2009) performs
slightly better than the Gamma base.

Table 4: Comparison of pricing results of the one-year European call option on continuous inte-
grated variance using the saddlepoint approximation with various base distributions: (i) Gaussian
distribution, (ii) Gamma distribution, (iii) Gaussian less exponential. The numerical results from
the direct numerical integration of the complex integral price formula are used as the benchmark
comparison for numerical accuracy. The market convention for quoting call price on continuous
integrated variance is percentage point squared; that is, the option value and strike price have been
multiplied by 1002.

Strike Gaussian Gamma Gaussian less numerical
price distribution distribution exponential integration

63.1 19.035 19.451 19.235 19.306
64.6 18.219 18.393 18.321 18.323
66.1 17.289 17.376 17.378 17.381
67.7 16.307 16.401 16.377 16.381
69.3 15.316 15.464 15.416 15.419
70.9 14.396 14.569 14.496 14.499
72.4 13.702 13.714 13.716 13.718
74.1 12.664 12.899 12.774 12.776
75.6 11.988 12.121 12.071 12.073
77.2 11.168 11.381 11.306 11.307
78.7 10.613 10.714 10.681 10.679
80.3 9.924 10.011 9.985 9.985
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5 Conclusion

We have derived saddlepoint approximation formulas for calculating tail expectation under non-
Gaussian base distribution using two different approaches: the Esscher exponentially tilting tech-
nique (Zheng-Kwok, 2014) and the local approximation of the exponent in the Laplace integral
(Huang-Oosterlee, 2011). Our numerical tests show higher level of numerical accuracy in the Zheng-
Kwok formula, even in extreme scenarios of high kurtosis when other saddlepoint approximation
formulas do not perform well. We also propose an effective set of criteria for matching better the
underlying distribution. The fourth order standardized cumulant is the best statistics used for
matching the underlying distribution and base distribution in determining the shape parameter
when the Gamma distribution or inverse Gaussian distribution is used as the base distribution. We
performed numerical tests to reveal enhanced numerical accuracy of the saddlepoint approximation
formulas under non-Gaussian base distribution in pricing European options on continuous integrat-
ed variance under the Heston stochastic volatility model. The use of the Gaussian less exponential
base performs better than the Gaussian base and provides very high numerical accuracy in option
value calculations (typically within 0.1% in percentage error).
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Appendix A Proof of formulas (2.6) and (2.7)

We consider the Legendre-Fenchel transformation of the exponentially θ-tilted distribution of X,
which involves the transformation from the variable z to the new variable wθ. Let ẑ denote the
saddlepoint for the original random variable X, where κ′(ẑ) = K. The saddlepoint equation for
the exponentially θ-tilted distribution based on the base distribution with cgf κ0(z) is given by [see
eqs.(2.4) and (2.5)]

wθκ
′
0(wθ)− κ0(wθ) = (ẑ − θ)K − κ(ẑ) + κ(θ). (A.1)

We obtain the following saddlepoint approximation to the θ-tilted tail probability (Wood et al.,
1993):

F̃ (K; θ) = F0

(
κ′0(ŵθ)

)
+ f0

(
κ′0(ŵθ)

){ 1

ŵθ
− 1

ẑ − θ

[
κ′′0(ŵθ)

κ′′(ẑ)

] 1
2

}
, (A.2)

where ŵθ is a root of eq.(A.1) that is chosen to have the same sign as that of ẑ. The differentiation
of F̃ (K; θ) with respect to θ gives

∂F̃ (K; θ)

∂θ

= f0
(
κ′0(ŵθ)

){[
K − κ′(θ)

] [ 1

ŵ3
θκ

′′
0(ŵθ)

− 1

ŵθ
+

κ′′′0 (ŵθ)

2ŵθκ
′′
0(ŵθ)

3
2 µ̂θ

]
−
√

κ′′0(ŵθ)

(ẑ − θ)µ̂θ

}

+ f ′
0

(
κ′0(ŵθ)

) [
K − κ′(θ)

] [√κ′′0(ŵθ)

ŵθµ̂θ
− 1

ŵ2
θ

]
,

(A.3)

where µ̂θ = (ẑ − θ)
√

κ′′(ẑ). Lastly, we set θ = 0 in ∂F̃ (K;θ)
∂θ and put all terms together to obtain

formula (2.6). Note that ŵ satisfies eq.(2.5), µ̂ = ẑ
√

κ′′(ẑ) and ẑ satisfies κ′(ẑ) = K.
The derivation of the degenerate case, E[X] = K, requires tedious calculation of the power

series expansion of various terms. For notational simplicity, we use the shorthand: ŵθ as ŵ. We
start with the expansion of the right hand side of (A.1) into a power series of θ− ẑ around the point
z = ẑ as follows:

κ(θ) = κ(ẑ) + κ′(ẑ)(θ − ẑ) +
1

2
κ′′(ẑ)(θ − ẑ)2 +

1

6
κ′′′(ẑ)(θ − ẑ)3 +

1

24
κ′′′′(ẑ)(θ − ẑ)4 +O

(
(θ − ẑ)5

)
.
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We define

b(ẑ) =
κ′′′(ẑ)

κ′′(ẑ)
and c(ẑ) =

κ′′′′(ẑ)

κ′′(ẑ)
,

and rewrite the right-hand side of (A.1) by

1

2
κ′′(ẑ)(ẑ − θ)2

[
1− 1

3
b(ẑ)(ẑ − θ) +

1

12
c(ẑ)(ẑ − θ)2 +O

(
(ẑ − θ)3

)]
.

Observing κ0(0) = 0 and applying a similar procedure to the left-hand side of (A.1), we derive the
following expansion around w = ŵ:

1

2
κ′′0(ŵ)ŵ

2

[
1− 1

3
b0(ŵ) +

1

12
c0(ŵ)ŵ

2 +O(ŵ3)

]
,

where

b0(ŵ) =
κ′′′0 (ŵ)

κ′′0(ŵ)
and c0(ŵ) =

κ′′′′0 (ŵ)

κ′′0(ŵ)
.

Combining the above results together, we obtain the following equation:

κ′′0(ŵ)ŵ
2

[
1− 1

3
b0(ŵ) +

1

12
c0(ŵ)ŵ

2 +O(ŵ3)

]
=κ′′(ẑ)(ẑ − θ)2

[
1− 1

3
b(ẑ)(ẑ − θ) +

1

12
c(ẑ)(ẑ − θ)2 +O

(
(ẑ − θ)3

)]
.

One can deduce that ŵ is the same order as ẑ− θ. Similarly, the expansion of K −κ′(θ) as a power
series of θ − ẑ is given by

K − κ′(θ) = κ′(ẑ)− κ′(θ)

= κ′′(ẑ)(ẑ − θ)

[
1− 1

2
b(ẑ)(ẑ − θ) +

1

6
c(ẑ)(ẑ − θ)2 +O

(
(ẑ − θ)3

)]
.

We observe that the asymptotic behaviors of ŵ at ŵ = 0 and ẑ at ẑ = θ share the same order. We
define the remainder term Rn(ŵ, ẑ − θ) as the collection of the power terms of ŵ and ẑ − θ with
their sum of exponents greater or equal to n. We can derive the asymptotic limit via the Laurent
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expansion of the different terms in eq.(A.3) as follows:

A =
K − κ′(θ)

ŵ3κ′′0(ŵ)
=

[K − κ′(θ)]
√

κ′′0(ŵ)[
ŵ
√

κ′′0(ŵ)
]3

=
[K − κ′(θ)]

√
κ′′0(ŵ)[√

κ′′0(ẑ)(ẑ − θ)
]3
[
1− 1

3b(ẑ)(ẑ − θ) + 1
12c(ẑ)(ẑ − θ)2 +O

(
(ẑ − θ)3

)]− 3
2[

1− 1
3b0(ŵ)ŵ + 1

12c0(ŵ)ŵ
2 +O(ŵ3)

]− 3
2

=

√
κ′′0(ŵ)√

κ′′0(ẑ)(ẑ − θ)2

1 + 1
2b(ẑ)(ẑ − θ) + [ 5

24b(ẑ)
2 − 1

8c(ẑ)](ẑ − θ)2 +O
(
(ẑ − θ)3

)[
1− 1

3b0(ŵ)ŵ + 1
12c0(ŵ)ŵ

2 +O(ŵ3)
]− 3

2[
1− 1

2
b(ẑ)(ẑ − θ) +

1

6
c(ẑ)(ẑ − θ)2 +O

(
(ẑ − θ)3

)]
=

√
κ′′0(ŵ)√

κ′′0(ẑ)(ẑ − θ)2

{
1 +

[
1

24
c(ẑ)− 1

24
b(ẑ2)

]
(ẑ − θ)2 +O

(
(ẑ − θ)3

)}
{
1− 1

2
b0(ŵ)ŵ +

[
1

24
b0(ŵ)

2 +
1

8
c0(ŵ)

]
ŵ2 +O(ŵ3)

}
=

√
κ′′0(ŵ)√

κ′′(ẑ)(ẑ − θ)2

{
1− 1

2
b0(ŵ)ŵ +

[
1

24
c(ẑ)− 1

24
b(ẑ)2

]
(ẑ − θ)2

+

[
1

24
b0(ŵ)

2 +
1

8
c0(ŵ)

]
ŵ2 +R3(ŵ, ẑ − θ)

}
.

Here, we calculate the power series expansion up to the third order so that the remainder terms
converge to 0 as ŵ → 0 and ẑ → θ. Also, we have arranged the singular terms in negative power
terms of ẑ − θ. In a similar manner, we obtain:

B =
(K − κ′(θ))κ′′′0 (ŵ)

2ŵκ′′0(ŵ)
3
2 (ẑ − θ)

√
κ′′(ẑ)

=
(K − κ′(θ))b0(ŵ)

2ŵ
√

κ′′0(ŵ)(ẑ − θ)
√

κ′′(ẑ)

=
b0(ŵ)

2(ẑ − θ)

[
1− 1

3
b(ẑ)(ẑ − θ)− 1

6
b0(ŵ)ŵ +R2(ŵ, ẑ − θ)

]
,

C =A+ B −
√

κ′′0(ŵ)

(ẑ − θ)2
√

κ′′(ẑ)

=
1

24

√
κ′′0(ŵ)

κ′′(ẑ)

[
c(ẑ)− b(ẑ)2

]
+

1

8

√
κ′′(ẑ)

κ′′0(ŵ)

[
c0(ŵ)− b0(ŵ)

2
]

− 1

12
b0(ŵ)b(ẑ) +R1(ŵ, ẑ − θ),

D =
K − κ′(θ)

ŵ
=
√

κ′′(ẑ)κ′′0(ŵ) +R1(ŵ, ẑ − θ),

E =
[
K − κ′(θ)

] [ √
κ′′0(ŵ)√

κ′′(ẑ)(ẑ − θ)ŵ
− 1

ŵ2

]
= D

[ √
κ′′0(ŵ)√

κ′′(ẑ)(ẑ − θ)
− 1

ŵ

]

=

√
κ′′(ẑ)κ′′0(ŵ)

6

[
b0(ŵ)√
κ′′0(ŵ)

− b(ẑ)√
κ′′(ẑ)

]
+R1(ŵ, ẑ − θ).

Collecting all terms together and taking the limits of ŵ → 0 and ẑ → θ, we obtain the following
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asymptotic limit:

∂F̃ (K; θ)

∂θ
= lim

ŵ→0,ẑ→θ

[
f0(κ

′
0(ŵ))(C − D) + f ′

0(κ
′
0(ŵ))E

]
= f0(κ

′
0(0))

{
1

24

√
κ′′0(0)

κ′′(θ)

[
κ′′′′(θ)

κ′′(θ)
− κ′′′(θ)2

κ′′(θ)2

]

+
1

8

√
κ′′(θ)

κ′′0(0)

[
κ′′′′0 (0)

κ′′0(0)
− κ′′′0 (0)

2

κ′′0(0)
2

]
− 1

12

κ′′′0 (0)

κ′′0(0)

κ′′′(θ)

κ′′(θ)
−
√

κ′′(θ)κ′′0(0)

}

+
f ′
0(κ

′
0(0))

√
κ′′(θ)κ′′0(0)

6

[
κ′′′0 (0)

κ′′0(0)
3
2

− κ′′′(θ)

κ′′(θ)
3
2

]
.

Lastly, we set θ = 0 to obtain eq.(2.7).

Appendix B Proof of Lemma 3.1

We let κX(z) denote the cgf of the random variable X, ẑX denote the corresponding saddlepoint
solution determined by κX(z) = K. Recall the linear transformation: LX = aX + b, a > 0. Let fX
and FX denote the density and distribution function of X, respectively. It is seen that

κLX(z) = bz + κX(az).

The corresponding saddlepoint, cdf and density of LX are related to those of X via the relations:

aẑLX = ẑX ,

FX(K) = FLX(LK),

fX(K) =
d

dK
FX(K) = afLX(LK).

The first order derivative of κLX(ẑX) is given by

κ′LX(ẑLX) = b+ aκ′X(ẑX) = Lκ′X(ẑX),

while the nth order derivatives are given by

κ
(n)
LX(ẑLX) = anκ

(n)
X (ẑX) , n ≥ 2.

By substituting the above relations into eq.(2.6) and eq.(2.11), we obtain the invariant property
(3.1) in Lemma 3.1.
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