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Outline

Product nature of the Guaranteed Lifelong Withdrawal Benefit (GLWB) in variable
annuities

– Policy value and benefit base

– Bonus (roll-up) provision and ratchet (step-up) provision

Pricing formulation as dynamic control models

– Withdrawals and initiation of income phase as controls

Optimal dynamic withdrawal policies and initiation of the income phase

– Bang-bang analysis: discrete set of decision choices

Sensitivity analysis of pricing and hedging

– Bonus rate on optimal withdrawal strategies

– Suboptimal withdrawal strategies on value function

– Contractual withdrawal rate on optimal initiation

– Hedging strategies on profits and losses
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Product nature of GLWB

The policyholder pays an initial premium and possibly subsequent premiums during
the accumulation phase to the issuer. The amount is then invested into the
policyholder’s choice of portfolio of mutual funds.

Two phases

– Accumulation phase: growth of the policy value and benefit base with equity
participation (limited withdrawals may be allowed in some contracts).

– Income phase: guaranteed annualized withdrawals regardless of the policy value until
the death of the last surviving Covered Person.

Accumulation
        phase

      Income
        phase

initiation of the

optimally chosen
by the policyholder

income phase is
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Market successes of GLWB

Retirement protection

Policyholders maintain equity positions in their retirement assets, thus take advantage of
the potential market upside growth, while getting lifelong annuities guaranteed.

equity participation of market upside growth

lifelong annuities guaranteed on the downside
down

up

Market size

In 2018, the sales of variable annuities in the US markets are around 100 billion dollars.
The GLWB rider is structured in about half of the new variable annuities sales.
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Policy fund account value

This is the ongoing value of the investment account, subject to changes due to
investment returns and withdrawal amounts, payment of the rider charges and
increment in value due to additional purchases of funds after initiation of the
contract.

Upon the death of the last Covered Person, the remaining (positive) amount in the
policy fund account will be paid to the beneficiary.
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Benefit base (used as the notional for determining the contractual withdrawal
amount)

The benefit base is initially set to be the upfront payment. The benefit base may
grow by virtue of the bonus (roll-up) provision in the accumulation phase and
ratchet (step-up) provision in the income phase.

Under the lifelong withdrawal guarantee, the policyholder is entitled to withdraw a
fixed proportion of the benefit base periodically (say, annual withdrawals) after
initiation of the income phase for life even when the policy fund account value has
been fully depleted.

Lifelong guaranteed withdrawal amount

= Lifelong withdrawal scheduled rate× benefit base
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Lifetime withdrawal rate

The contractual lifetime withdrawal rate is dependent on the age of the policyholder
entering into the Income phase.

In some contracts, the jumps in the lifetime withdrawal rate occur in 3-year or 5-year
time periods.

Age when
59 and under 60-64 65-79 80+

withdrawals begin

Lifetime withdrawal single: 3.5% single: 4.5% single: 5.5% single: 6.5%

percentage spousal: 3% spousal: 4% spousal: 5% spousal: 6%

Below is another example from a GLWB contract.

Age 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Single life 3.5% 3.6% 3.7% 3.8% 3.9% 4.0% 4.1% 4.2% 4.3% 4.4% 4.5% 4.6% 4.7% 4.8% 4.9% 5.0%

joint life 2.8% 2.9% 3.0% 3.1% 3.2% 3.3% 3.4% 3.5% 3.6% 3.7% 3.8% 3.9% 4.0% 4.1% 4.2% 4.3%
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Bonus provision

Let Wi and γi be the fund (policy) value and withdrawal amount at year i , respectively,
ηb be the percentage of the benefit base charged on the policy fund value as the annual
rider fee, G(τI ) is the contractual withdrawal rate with dependence on the initiation year
τI of the income phase.

Suppose the policyholder chooses not to withdraw at year i , either in the
accumulation or income phase, then the benefit base Ai is increased proportionally
by the bonus rate bi under the bonus provision, where

A+
i = Ai (1 + bi ) if γi = 0.

In the income phase, when 0 < γi ≤ G(τI )Ai , then the benefit base would not be
reduced and the withdrawal is not subject to penalty charge.

When γi > G(τI )Ai , then the benefit base decreases proportionally according to the
amount of excess withdrawal. The ratio of decrease is given by

excess withdrawal

net fund value after withdrawal
=

γi − G(τI )Ai

Wi − ηbAi − G(τI )Ai
.
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Ratchet provision

The jump condition on the benefit base arising from the ratchet provision on a ratchet
date i ∈ T e (preset dates that allow ratchet) is given by

A+
i

=

max
(
Ai ,
(
(Wi − ηbAi )

+ − γi
)+

1{i∈T e}
)

if 0 < γi ≤ GAi−

max
(

Wi−ηbAi−γi
Wi−ηbAi−G(τI )Ai

Ai ,
(
(Wi − ηbAi )

+ − γi
)

1{i∈T e}
)

if GAi− < γi ≤Wi − ηbAi .

The value of A+
i right after time i have dependence on their values Wi and Ai right

before time i and the withdrawal amount γi .

When the withdrawal γi does not exceed GAi− , Ai+ takes the maximum between Ai

and the net fund value after paying the withdrawal amount and rider fee.

When γi > GAi , the effect of proportional decrease on Ai is taken into account.
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Schematic plot to show the growth of the benefit base

Under zero withdrawal during the accumulation phase, the benefit base increases by
a proportional amount (bonus provision).

During the income phase, the benefit base is increased to the policy fund value if the
benefit base is below the policy fund value (ratchet provision).
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Cashflows received by the policyholder

Let ki be proportional penalty charge applied on the excess of withdrawal amount over
the contractual withdrawal at year i .

In the accumulation phase, the cash flow f Ai (γi ;Ai ) received by the policyholder as
resulted from the withdrawal amount γi is given by

f Ai (γi ; Ai ) =

{
γi if − BAi ≤ γi ≤ 0

(1 − ki )γi if 0 < γi ≤ (Wi − ηbAi )
+ .

Here, B is the cap multiplier of the benefit base that fixes the upper bound of
additional purchase (corresponding to γi < 0).

In the income phase, the excess withdrawal beyond the contractual withdrawal
amount G(τI )Ai is charged at proportional penalty rate ki . The actual cash amount
received by the policyholder as resulted from the withdrawal amount γi is given by

f Ii (γi ; Ai ,G(τI )) =

 γi if 0 ≤ γi ≤ G(τI )Ai

G(τI )Ai + (1 − ki )[γi − G(τI )Ai ] if G(τI )Ai < γi ≤ Wi − ηbAi

.
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Pricing formulation as dynamic control models

Let Γ denote the optimal withdrawal strategies as characterized by the vector
(γ1, γ2, . . . , γT−1), where γi is the annual withdrawal amount or additional purchase
(considered as negative withdrawal) on the withdrawal date i and T is the perceived
latest withdrawal date.

Let E be the admissible strategy set for the pair of control variables (Γ, τI ), where τI is
the optimal time for the initiation of the income phase.

Under Q-measure, the value function of the GLWB products is formally given by

V (W ,A, v , 0) = sup
(Γ,τI )∈E

EQ

[ τS∧(T−1)∑
i=1

e−ripi−1qi−1Wi +

(τI−1)∧τS∑
i=1

e−ripi f
A
i (γi ;Ai )

+

τS∧(T−1)∑
i=τI

e−ripi f
I
i

(
γi ;Ai ,G(τI )

)
+ 1{τS>T−1}e

−rTpT−1WT

]
.

Here, pi is the survival probability up to year i and qi is the death probability in (i , i + 1).
The optimal complete surrender time τS is dictated by the optimal choice of the
withdrawal amount γi , where

τS = inf {i ∈ T |γi = Wi − ηbAi > 0} .
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Four sources of cashflows to the policyholder

The first summation term represents the death payment weighted by the probability
of mortality from the initiation date of the contract to the complete surrender time
τS or T − 1, whichever comes earlier.

The second summation term gives the sum of discounted withdrawal cash flows from
the initiation date of the contract to the last withdrawal date in the accumulation
phase or the complete surrender time τS , whichever comes earlier.

The third summation term gives the sum of discounted withdrawal cash flows from
the initiation date of the income phase to the complete surrender time τS or T − 1,
whichever comes earlier.

The last single term is the discounted cash flow received by the policyholder at the
maximum remaining life T provided that complete surrender has never been adopted
throughout the whole life of the policy.
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Stochastic volatility model for the fund value process

The general formulation of the stochastic volatility model for the Q-dynamics of the
underlying fund value process of Wt can be expressed as

dWt = (r − η)Wt dt +
√
vtWt

[
ρ dB

(1)
t +

√
1− ρ2 dB

(2)
t

]
and

dvt = κv a
t (θ − vt) dt + εvb

t dB
(1)
t ,

for a = {0, 1} and b = {1/2, 1, 3/2}.

Here, B
(1)
t and B

(2)
t are uncorrelated Q-Brownian motions, ρ is the correlation coefficient

between Wt and vt , ε is the volatility of variance, κ is the risk neutral speed of mean
reversion, θ is the risk neutral long-term mean variance, and r is the riskless interest rate.

Analytic expressions for the characteristic function of the fund value process Wt are
available for these choices of stochastic volatility models.
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Bang-bang analysis

The design of the numerical algorithm would be much simplified if the choices of the
optimal withdrawal amount γi are limited to a finite number of discrete values. The
technical analysis relies on the convexity and monotonicity properties of the value
function.

As part of the technical procedure, it is necessary to require the two-dimensional Markov
process {(Wt , vt)}t to observe the following mathematical properties:

Property 1 (Convexity preservation)

For any convex terminal payoff function Φ(WT ), the corresponding European price
function as defined by

φ(w , v) = e−r(T−t)E [ Φ(WT )|Wt = w , vt = v ] , t ≤ T ,

is also convex with respect to w.
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Property 2 (Scaling)

For any positive K, the two stochastic processes {(Wt , vt)}t and {(Wt
K
, vt)}t have the

same distribution law given that their initial values are the same with each other almost
surely.

The stochastic volatility models under a = {0, 1} and b = {1/2, 1, 3/2} satisfy these two
properties.

By virtue of Property 2, the value functions V (I ) and V (A) satisfy the following scaling
properties for any positive scalar K :

V (I )(KW ,KA, v , t;G0) = KV (I )(W ,A, v , t;G0)

V (A)(KW ,KA, v , t) = KV (A)(W ,A, v , t).

Since the benefit base A does not change within consecutive withdrawal dates, by
virtue of the above scaling properties, we can achieve reduction in dimensionality of
the pricing model by one by defining W̃ = W /A.

The scaling properties are also crucial in establishing the bang-bang control analysis.
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We write GLWB(A) and GLWB(I) to represent the value function of the GLWB rider in the
accumulation phase and income phase, respectively. The main results on the bang-bang
control strategies for GLWB(I ) and GLWB(A) are summarized follows.

Theorem

Assume that {(Wt , vt)}t satisfies both Properties 1 and 2, GLWB(I ) and GLWB(A)

observe the following optimal withdrawal strategy, respectively.

1 On any withdrawal date i , the optimal withdrawal strategy γi within the income
phase for GLWB(I ) with a positive guaranteed rate G0 is limited to (i) γi = 0; (ii)
γi = G0Ai ; or (iii) γi = Wi − ηbAi .

2 On any withdrawal date i , the optimal strategy on this withdrawal date within the
accumulation phase for GLWB(A) is either

(2a) to initiate the income phase on this withdrawal date if V
(I )
C (i) > V

(A)
C (i) and the

subsequent optimal withdrawal strategy γi is limited to (i) γi = 0; (ii) γi = G(i)Ai ; or
(iii) γi = Wi − ηbAi ;

(2b) or to remain in the accumulation phase on this withdrawal date if V
(I )
C (i) ≤ V

(A)
C (i)

and the optimal withdrawal strategy γi is limited to (i) γi = −BAi ; (ii) γi = 0; or (iii)
γi = Wi − ηbAi .
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When the policy is already in the income phase, the withdrawal policies are limited
to zero withdrawal, withdrawal at the contractual rate or complete surrender.

– Due to the penalty charge on excess withdrawal, the bang-bang analysis shows that it
is not optimal to withdraw more than the scheduled withdrawal amount, except
choosing complete surrender.

When the policy is in the accumulation phase, the policyholder may choose to enter
into the income phase or stay in the accumulation phase.

– The subsequent optimal policies while staying in the accumulation phase are limited to
maximum allowable purchase, zero withdrawal or complete surrender.

Remark
We obtain the above bang-bang strategies under discrete withdrawals of the GLWB rider.
The knowledge of these optimal withdrawal strategy avoid the tedious procedure of
searching for the optimal strategies from continuum of choices of withdrawal amounts.
Note that such bang-bang results fail under the GMWB counterpart.
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Dynamic programming procedure

The time-t value function of GLWB(I), denoted by V (I ) (W ,A, v , i ;G0), is seen to have
dependence on the guaranteed withdrawal rate G(τI ).

Since the contractual withdrawal rate depends on the optimal initiation time of the
income phase τI , it is necessary to calculate a set of V (I ) (W ,A, v , t;G0) with G0 being
set to be G(i), i = 1, 2, · · · ,Ta + 1. Here, Ta be the last date on which the GLWB
contract may stay in the accumulation phase.

Using the dynamic programming principle of backward induction, we compute
V (I )(W ,A, v , i ;G0) as follows:

V (I )(W ,A, v ,T ;G0) = pT−1WT ,

V (I )(W ,A, v , i ;G0)

= pi−1qi−1Wi + sup
γi∈[0,max(Wi−ηbAi ,G0Ai )]

{pi f Ii (γi ;Ai ,G0)

+ e−rEQ [V (I )(W ,A, v , i + 1;G0)|(Wi+ ,Ai+ ) = h
I
i (Wi ,Ai , γi ;G0), vi+ = vi ]},

where i = 1, 2, · · · ,T − 1 and G0 = Gnk , k = 1, · · · ,K . Here, hI
i is the jump function of

the policy fund and benefit base associated with γi and G0.
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We let V (A)(W ,A, v , t) be the time-t value function of GLWB(A).

For an event date, 1 ≤ i ≤ Ta − 1, we have

V (A)(W ,A, v , i) = pi−1qi−1Wi + max{V (A)
C (i),V

(I )
C (i)},

where

V
(A)
C (i) = sup

γi∈[−BAi ,0,(Wi−ηbAi )
+]

{pi f Ai (γi ;Ai )

+ e−rEQ [V (A)(W ,A, v , i + 1)|(Wi+ ,Ai+ ) = h
A
i (Wi ,Ai , γi ), vi+ = v ]},

V
(I )
C (i) = sup

γi∈[0,max((Wi−ηbAi )
+,G(i)Ai )]

{pi f Ii (γi ;Ai ,G(i))

+ e−rEQ [V (I )(W ,A, v , i + 1;G(i)
)
|(Wi+ ,Ai+ ) = h

I
i (Wi ,Ai , γi ;G(i)), vi+ = vi ]}.

Here, V
(A)
C (i) corresponds to the value function under continuation that the policyholder

chooses not to activate the income phase at year i .

Since the policyholder is entitled to choose to stay in the accumulation phase or activate
the income phase in the next year i + 1, so max{V (A)

C (i),V
(I )
C (i)} is taken.
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Maximizing the monetary value of the riders

The price function and optimal strategies are formulated as a stochastic control
model based on the assumption that the policyholder adopts optimal strategies that
maximize the monetary value of the GLWB riders. The policyholder may follow what
appears to be a sub-optimal strategy that does not maximize the monetary value of
the embedded guarantees, say, due to tax considerations and liquidity needs.

The cost of hedging under this assumption of maximizing monetary value serves as
an important benchmark in the sense that it is the worse case scenario for the writer.
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Numerical algorithms

1. Under the affine Heston stochastic volatility model, we performed the calculations
using the fast Fourier transform method since the characteristic function of the fund
value process is available in simple analytic form.

“Optimal initiation of guaranteed lifelong withdrawal benefit with dynamic
withdrawal,” SIAM Journal on Financial Mathematics, 2017, vol.8, p.804-840 (with
Y.T. Huang and P.P. Zeng).

2. For the 3/2-model, we employed the regression-based Monte Carlo simulation
method in finding the optimal withdrawal strategies, similar to most optimal
stopping models.

“Regression-based Monte Carlo methods for stochastic control models: Variable
annuities with lifelong guarantees,” Quantitative Finance, 2016, vol.16, p.905-928
(with Y.T. Huang).
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Numerical studies on the value functions and choices of optimal policies on contractual
specifications, like bonus rate, penalty charge, contractual withdrawal rate (dependent on
the age at which income phase is initiated)

Parameter Value
Volatility, σ 0.20
Interest rate, r 0.04
Penalty for excess withdrawal, k (t) 0 ≤ t ≤ 1 : 3%, 1 < t ≤ 2 : 2%,

2 ≤ t ≤ 3 : 1%, 3 < t ≤ 4 : 0%
Expiry time, T (years) 57
Initial payment, S0 100
Mortality DAV 2004R (65 year old male)
Mortality payments At year end
Withdrawal rate, G 0.05 annual
Bonus (no withdrawal) 0.06 annual
Withdrawal strategy Optimal
Withdrawal dates yearly

Model and contract parameters.
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Withdrawal strategies in the income phase – impact of bonus rate

Percentage of each of the 3 optimal withdrawal strategies (i) γ = 0,

(ii) γ = GA, (iii) γ = W over the policy life of the GLWB under the

3/2-model.

25

Plots of proportion of withdrawal policies adopted (measured by number of simulation
paths)
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The zero withdrawal strategy is suboptimal when the bonus rate is low (4%), below
the contractual withdrawal rate 5%. Surrender as the optimal choice occurs most
likely on earlier withdrawal dates.

When the bonus rate is increased to 7%, the policyholder chooses zero withdrawal
on early withdrawal dates with almost certainty. However, this tendency decreases
on later withdrawal dates since the advantage of building the benefit base at later
time becomes less significant.
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Impact on value function under suboptimal withdrawal strategies

Penalty for excess withdrawal, k (t) 0 ≤ t ≤ 1 : 6% (10%), 1 < t ≤ 2 : 5% (9%),

2 ≤ t ≤ 3 : 4% (8%), 3 < t ≤ 4 : 3% (7%),

4 ≤ t ≤ 5 : 2% (6%), 5 < t ≤ 25 : 1% (5%),

25 < t ≤ T : 0% (0%)

Table: Penalty charge settings “Penalty 1” and “Penalty 2”.

Bonus rate Penalty charge Optimal Strategy Suboptimal Strategy 1 Suboptimal Strategy 2

0 1 100.3315 100.2746 97.8960

0 2 98.9781 98.9669 97.8960

0.04 1 100.2770 100.2746 97.8960

0.04 2 98.9728 98.9669 97.8960

0.07 1 101.4455 100.2746 97.8960

0.07 2 99.8056 98.9669 97.8960

0.08 1 103.0922 100.2746 97.8960

0.08 2 101.6182 98.9669 97.8960

Table: Sensitivity analysis of the contractual features on the GLWB price.

“Suboptimal Strategy 1”: only take two strategies on each withdrawal date: γ = GA
and γ = W .

“Suboptimal Strategy 2”: only takes γ = GA until death.

The additional flexibility of choosing γ = 0 adds little value when the bonus rate is
low and/or the penalty charge is high.
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Optimal initiation region with respect to the age x0

age contractual withdrawal rate

65 ≤ x0 ≤ 70 0.05

71 ≤ x0 ≤ 75 0.055

76 ≤ x0 ≤ 120 0.06

r = 0.05 and ηb = 0.01, bi = 0.06

When W̃ falls below some threshold value, it may be optimal to initiate the income
phase to receive the withdrawals.

When the age is approaching the trigger age of moving to the next higher
withdrawal rate, it is optimal to delay initiation even at very low W̃ in order to enjoy
the higher withdrawal rate.
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Plot of the optimal initiation region (shaded) in the W̃ -x0 plane under the impact of the
contractual withdrawal rate Gx0 (t). The contractual withdrawal rate would not increase

beyond x0 = 76, so it is optimal to initiate the income phase at any level of W̃ .

Yue Kuen Kwok (HKUST) 28 / 38



Three main sources of risk

1. Mortality risk

When the mortality risk is fully diversifiable, one may hedge mortality risk by selling
independent policies to a group of policyholders with similar risk of death.

There may be systematic change in mortality risk affecting all of the population
simultaneously, called the longevity risk.

2. Policyholder behavior risk

Deterministic assumption: inferred from historical statistics on decision making
processes.

Optimal decision making or at least based on some market factors (like moneyness of
the guarantee).
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3. Financial risk

One may follow delta hedging, similar to hedging of options. The crucial difference
is that the costs of these guarantees are not paid upfront, unlike initial option
premiums.

Fees are paid periodically as a percentage of the fund value throughout the life of the
contract. The challenge is how to use the collected fees to match the payoff of the
guarantees when they should be paid.

The value of collected fees and the cost of hedging move in opposite direction. When
the value of fee is low (low fund value), the value of embedded options is high.

Difficulties of using static hedging using put options

(i) Neglect path dependent feature of the fund value.

(ii) Costs of buying options may not match with the uncertain fees collected.
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Hedging procedures

We let B(t) be the money market account, S(t) be the underlying fund, W (t) be the
policy fund value and V (t) be the value of the GLWB.

Between consecutive withdrawal dates, the value process Wt follows the same
dynamic equation as that of S(t) except for the proportional rider fee charged on
the policy fund.

On each withdrawal date, unlike the underlying fund S , W decreases by the
withdrawal amount chosen by the policyholder.

We use S as a tradable proxy to hedge the exposure of the GLWB on W .
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We construct a portfolio that consists of the money market account, underlying fund and
GLWB as follows:

Π(t) = ∆B(t)B(t) + ∆S(t)S(t)− V (t),

where ∆B and ∆S are the number of holding units of the money market account and the
underlying fund, respectively. Also, we denote the number of holding units of the policy
fund value by ∆W .

By equating the dollar values of the underlying fund and policy fund value in the
portfolio, we have ∆SS = ∆WW .

We impose the self-financing condition on Π(t) with the initial value Π(0) being zero.
The value of Π(t) may be interpreted as the profit and loss of the portfolio at time t.
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We consider three hedging strategies: (i) non-active hedging; (ii) delta hedging; (iii)
minimum variance hedging.

Under non-active hedging, the insurance company puts the upfront premium paid by
the investor of the GLWB into the money market account and does not hold any
position in the underlying fund at any time, so that ∆S is identically zero
throughout all times. The fees collected are put into the money market account.

For the delta hedging strategy, ∆W is set to be ∂V
∂W

, so that ∆S is equal to W
S
∂V
∂W

.
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For the minimum variance hedging strategy, ∆W is chosen to minimize the variance of
the portfolio’s instantaneous changes. One can show that ∆W for the (local) minimum
variance hedging under the 3/2-model is given by

∆W =
∂V

∂W
+ ρ

εv

W

∂V

∂v
.

Hence, we have

∆S =
W

S
(
∂V

∂W
+ ρ

εv

W

∂V

∂v
).

Remark

Bernard and Kwak (2016) propose the net liability hedge where the collected fees are
utilized right the way in the hedging strategy.
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Histogram of profit and loss of the non-active hedging strategy, delta hedging strategy
and minimum variance hedging strategy. The profit and loss is in the form of relative
percentage of the initial payment. The number of simulation paths is 50,000 and the
hedging frequency is monthly.
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Realization of the profit and loss at maturity by following the non-active hedging
strategy, delta hedging strategy and minimum variance hedging strategy with 200 sample
paths. The profit and loss is in the form of relative percentage of the initial payment.
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The variance of the profit and loss under the delta hedging and minimum variance
hedging are seen to be much smaller than that under the non-active hedging. This
indicates good efficiency of the delta hedging and minimum variance hedging.

The standard deviations of the profit and loss by following the delta hedging and
minimum variance hedging stay almost at the same level. The monthly hedging
procedure may be too infrequent for the minimum variance hedging to be effective in
reducing the standard deviation of profit and loss.

There are other more sophisticated hedging strategies, such as the delta-gamma hedging
that is used in complex structured derivatives. The success of employing these hedging
strategies relies on accurate sensitivity estimation, which is a challenging topic itself.
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Conclusion

We present the optimal control models to compute the value functions of GLWB in
both the accumulation and income phases.

Effective pricing calculations can be performed by fast Fourier transform method or
regression-based Monte Carlo simulation method. Computational efficiency of the
numerical procedure is enhanced by the bang-bang analysis of the set of control
policies on withdrawal strategies and initiation time of the income phase.

We analyze the optimal withdrawal policies and optimal initiation policies under
various contractual specifications and study the sensitivity analysis on the price of
the GLWB by varying the embedded contractual features and the assumption on the
policyholder’s withdrawal behavior.

We consider the hedging efficiencies and profit-loss profiles under various hedging
strategies.
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