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Agenda

1. Product nature and uses of timer options

• Barrier options in the volatility space: knock-out depends

on the discrete realized variance hitting the preset variance

budget

2. Perpetual timer options

• Black-Scholes type representation

• Joint density function of functionals of instantaneous invari-

ance

3. Analytic price formulas of finite maturity timer options (two-

dimensional Fourier integrals) under 3/2-model of stochastic

volatility
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Variance budget

The investor specifies a maximum bound T on the option life and

a target volatility σ0 to define a variance budget

B = σ20T.

Let ti, i = 0,1,2, . . . , N , be the monitoring dates. Let τB be the

random first hitting time in the tenor of monitoring dates at which

the discrete realized variance exceeds the variance budget B, namely,

τB = min

j
∣∣∣∣∣∣
j∑

i=1

(
ln

Sti
Sti−1

)2
≥ B

∆.

Here, ∆ is the uniform time interval between consecutive monitoring

dates.

Termination date of a finite-maturity timer option = min(τB, T ),

where T is the preset mandated expiration date.
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Knocked out at τB since the variance budget has been breached.

This occurs earlier than T .
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Uses of timer options

• Portfolio managers can use the timer put options on an index to

hedge sudden market drops (with uncertainty in timing). Con-

pensations from the timer put payoff are received earlier (due

to increased volatility) after the incidence of market drop. In

the bullish market where the stock price increases, the realized

volatility decreases thus giving longer life of the time put.

• The implied volatility is often higher than the realized volatili-

ty. If one feels the implied volatility in the market is too high

currently, then one can capture the volatility risk premium by

longing a timer call and shorting a vanilla call (higher price due

to higher level of implied volatility). The volatility target is set

below the current implied volatility and the volatility risk pre-

mium is captured by the difference in values of the two call

options.

5



Analytic pricing formula of discretely monitored finite-maturity

timer options under stochastic volatility models

Define the continuous integrated variance to be It =
∫ t
0
vs ds. We

use It as a proxy of the discrete realized variance for the monitoring

of the first hitting time. We define τB to be

τB = min

j
∣∣∣∣∣∣Itj ≥ B

∆.

This approximation does not introduce a noticeable error for daily

monitored timer options. Note that

C0(X0, I0, V0) = E0[e
−r(T∧τB)max(ST∧τB −K,0)]

= E0[e
−rTmax(ST −K,0)1{τB>T}

+ e−rτBmax(SτB −K,0)1{τB≤T}],

where K is the strike price and r is the constant interest rate.
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Decomposition into a portfolio of timerlets

1. No knock-out occurs prior to T : {τB > T} = {IT < B}

Terminal payoff = max(ST −K,0)1{IT<B}.

2. Knock-out occurs at tj+1:

{τB = tj+1} = {Ij+1 ≥ B, Ij < B} = {Itj < B}\{Itj+1 < B}.

That is, there is no knock-out by tj but rule out “no knock-out

by tj+1”.

Summing j = 0,1, . . . , N − 1, we have

{τB = T} =
N−1∪
j=0

{τB = tj+1} =
N−1∪
j=0

{Itj < B}\{Itj+1 < B}.
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A finite-maturity discrete timer call option can be decomposed into

a portfolio of timerlets:

C0 = E0[ e
−rTmax(ST −K,0)1{IT<B}]

+ E0

N−1∑
j=0

e−rtj+1

(
max(Stj+1 −K,0)1{Itj<B}

− max(Stj+1 −K,0)1{Itj+1
<B}

)]
.

The challenge is the modeling of the joint processes of {Stj+1, Itj}
(two state variables at two different time levels tj and tj+1) and

{Stj+1, Itj+1}.

Under a stochastic volatility model, the log return log
Stj+1

Stj
has

dependence on the stochastic process of the instantaneous variance.
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Stochastic volatility model

Consider the stochastic volatility model specified as follows:

dSt
St

= (r − q)dt+
√
vt
(
ρdWt+

√
1− ρ2 dW v

t

)
,

dvt = α(vt)dt+ β(vt)dW
v
t ,

where ρ is the correlation coefficient between the asset price pro-

cess St and instantaneous variance process vt, Wt and W v
t are two

independent Brownian motions. The drift function α(vt) and the

volatility function β(vt) are measurable functions with respect to

the natural filtration generated by the two correlated Brownian mo-

tions.
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Usually, β(vt) assumes the form of a power function. The common

choices of the power are 3/2 and 1/2.

• For the 3/2-model, we choose

α(vt) = vt(θt − κvt) and β(vt) = ϵv
3/2
t .

• For the Heston 1/2-model, we choose

α(vt) = λ(θt − vt) and β(vt) = ηv
1/2
t .
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Analytic evaluation in the Fourier domain

Write log asset price Xt = lnSt and integrated variance It =
∫ t
0 vs ds,

where It is used as a proxy for the discrete realized variance used in

the knock-out condition in the timer option.

Pricing of the timerlets involves the joint process of St and It (may

or may not be at the same time point).

Let x stands for lnStj+1 and y stands for Itj or Itj+1. The Fourier

transform F̂ (ω, η) of the terminal payoff (Stj+1 − K,0)1{Itj<B} and

(Stj+1 −K,0)1{Itj+1
<B} admit the same analytic representation

F̂ (ω, η) =
∫ ∞

−∞

∫ ∞

−∞
e−iωx−iηy(ex −K)+1{y<B} dxdy =

K1−iωe−iηB

(iω+ ω2)iη
.

We take ω = ωR+ iωI and η = ηR+ iηI, where the damping factors

are chosen such that ωI < −1 and ηI < 0, to ensure the existence

of the two-dimensional Fourier transform.
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Fourier integral representation of the price formula

By the Parseval Theorem, the finite-maturity discrete timer op-

tion price admits the following analytic formula in terms of a two-

dimensional Fourier integral:

C0 =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−rT F̂ (ω, η)E0[e

iωXtN+iηItN ] dωRdηR

+
N−1∑
j=0

1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−rtj+1

{
F̂ (ω, η)E0[e

iωXtj+1
+iηItj ]− F̂ (ω, η)E0[e

iωXtj+1
+iηItj+1]

}
dωRdηR.

The challenging tasks involve the determination of the conditional

characteristic functions:

E0

[
e
iωXtj+1

+iηItj+1

]
and E0

[
e
iωXtj+1

+iηItj
]

under the relevant stochastic volatility model.
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Partial Fourier transform of the triple joint density function

Let G(t, x, y, v; t′, x′, y′, v′) be the joint transition density of the triple

(X, I, V ) from state (x, y, v) at time t to state (x′, y′, v′) at a later

time t′. The joint transition density G satisfies the following three-

dimensional Kolmogorov backward equation:

−
∂G

∂t
=

(
r − q −

v

2

)
∂G

∂x
+
v

2

∂2G

∂x2
+ v

∂G

∂y
+ α(v)

∂G

∂v

+
β(v)2

2

∂2G

∂v2
+ ρ

√
vβ(v)

∂2G

∂x∂v
,

with the terminal condition:

G(t′, x, y, v; t′, x′, y′, v′) = δ(x− x′)δ(y − y′)δ(v − v′),

where δ(·) is the Dirac delta function.
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We define the generalized partial Fourier transform of G by Ǧ as

follows:

Ǧ(t, x, y, v; t′, ω, η, v′) =
∫ ∞

−∞

∫ ∞

0
eiωx

′+iηy′G(t, x, y, v; t′, x′, y′, v′) dy′dx′,

where the transform variables ω and η are complex variables.

The partial transform Ǧ solves the three-dimensional Kolmogorov

equation with the terminal condition:

Ǧ(t′, x, y, v; t′, ω, η, v′) = eiωx+iηyδ(v − v′).

The conditional characteristic function of (Xt, It) conditional on

(Xt′, It′) can be obtained by integrating Ǧ(t, x, y, v; t′, ω, η, v′) with

respect to v′ from 0 to ∞.
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Note that Ǧ admits the following solution form:

Ǧ(t, x, y, v; t′, ω, η, v′) = eiωx+iηyg(t, v; t′, ω, η, v′),

where g satisfies the following one-dimensional partial differential

equation:

−
∂g

∂t
=

[
iω
(
r − q −

v

2

)
− ω2v

2
+ iηv

]
g

+[α(v) + iωρ
√
vβ(v)]

∂g

∂v
+
β(v)2

2

∂2g

∂v2
,

with the terminal condition:

g(t′, v; t′, ω, η, v′) = δ(v − v′).

The double generalized Fourier transform on the log-asset and inte-

grated variance pair reduces the three-dimensional governing equa-

tion to a one-dimensional equation.
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Conditional characteristic functions

The conditional characteristic function of (Xtj , Itj) is found by in-

tegrating Ǧ(t0, Xt0, It0, v0; tj, Xtj , Itj , v
′) with respect to v′ from 0 to

∞

E0[e
iωXtj+iηItj ] =

∫ ∞

0
Ǧ(t0, Xt0, It0, v0; tj, Xtj , Itj , v

′) dv′

= eiωX0+iηI0
∫ ∞

0
g(t0, v0; tj, ω, η, v

′) dv′.

= eiωX0+iηI0h(t0, v0; tj, ω, η)

The expectation calculation

E0[e
−rtj+1 max(Stj+1 −K,0)1{Itj<B}

]

requires the joint conditional characteristic function of It at tj and

St at tj+1.
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Iterated expectation

Working backward in time from tj+1 to tj, we compute Etj[e
iωXtj+1];

and from tj to t0, we compute E0[e
iωXtj+iηItj ]. This is done by

setting η = 0 in h(tj, v
′; tj+1, ω, η) and integrating g(t0, v0; tj, ω, η, v

′)
h(tj, v

′; tj+1, ω,0) over v′ from 0 to ∞.

By the two-step expectation calculation, we obtain

E0[e
iωXtj+1

+iηItj ]

= eiωX0+iηI0
∫ ∞

0
g(t0, v0; tj, ω, η, v

′)h(tj, v
′; tj+1, ω,0) dv′.

Here, v′ is the dummy variable for the instantaneous variance vtj.
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Analytic expressions for g and h under the 3/2-model

For the 3/2-model, we manage to obtain

g(t, v; t′, v′)

= ea(t
′−t)At

Ct
exp

(
−
Atv+ v′

Ctvv′

)
(v′)−2

(
Atv

v′

)1
2+

κ̃
ε2
I2c

 2

Ct

√
At

vv′

 ,
where I2c is the modified Bessel function of order 2c,

a = iω(r − q), κ̃ = κ− iωρε, At = e
∫ t′
t θs ds,

Ct =
ε2

2

∫ t′
t
e
∫ s
t θs′ds

′
ds, c =

√(
1

2
+

κ̃

ε2

)2
+

iω+ ω2 − 2iη

ε2
.

h(t, v; t′, ω, η) =
∫ ∞

0
g(t, vt; t

′, ω, η, v′) dv′

= ea(t
′−t)Γ(β̃ − α̃)

Γ(β̃)

(
1

Ctv

)α̃
M

(
α̃, β̃,−

1

Ctv

)
,

where α̃ = −1
2 − κ̃

ε2
+ c, β̃ = 1+ 2c, Γ is the gamma function, M is

the confluent hypergeometric function of the first kind.
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Proof of the formula for g

Write g̃ = gea(t−t
′) and define

g̃(t, v; t′, ω, η, v′) =
uα

(u′)α−2
f(t, u; t′, ω, η, u′),

then the governing equation for f becomes

−
∂f

∂t
=

ε2u

2

∂2f

∂u2
+ [ε2(α+1)+ κ̃− θtu]

∂f

∂u
− αθtf

+

[
ε2

2
(α2 + α) + κ̃α−

iω+ ω2

2
+ iη

]
f

u
,

subject to

f(t′, u; t′, ω, η, u′) = δ(u− u′).

We choose the free parameter α so that the coefficient of f/u van-

ishes, thus eliminating the occurrence of complex numbers in the

governing equation.
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Apparently, we choose α = α(ω, η) such that

ε2

2
(α2 + α) + κ̃α−

iω+ ω2

2
+ iη = 0,

so the governing equation of f becomes

−
∂f

∂t
=
ε2u

2

∂2f

∂u2
+ [ε2(α+1)+ κ̃− θtu]

∂f

∂u
− αθtf,

where all the coefficients are affine in u.

It follows that α can take two values

α = −
(
1

2
+

κ̃

ε2

)
± c,

where

c(ω, η) =

√(
1

2
+

κ̃

ε2

)2
+

iω+ ω2 − 2iη

ε2
.

We choose the positive sign for c in α due to the technical condition

required for the existence of the Laplace transform of f in the later

procedure.
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We write the Laplace transform of f with respect to u′ as follows

f̂(t, u; t′, ω, η, ξ) =
∫ ∞

0
e−ξu

′
f(t, u; t′, ω, η, u′) du′.

Then, f̂ admits the following exponential affine solution:

f̂(t, u; t′, ω, η, ξ) = exp(B(t, ξ)u+D(t, ξ)),

where B(t, ξ) and D(t, ξ) are parameter functions determined by the

following Riccati system of ODEs:

−
∂B

∂t
=

ε2

2
B2 − θtB,

−
∂D

∂t
= [ε2(α+1)+ κ̃]B − αθt,

with boundary conditions B(t′, ξ) = −ξ and D(t′, ξ) = 0. It can be

found that

B(t, ξ) = −
ξ

At+ Ctξ
,

where

At = e
∫ t′
t θs ds, Ct =

ε2

2

∫ t′
t
e
∫ s
t θτ dτ ds.
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We obtain

D(t, ξ) = −2
[
α+1+

κ̃

ε2

]
ln(At+ Ctξ) +

[
α+2+

2κ̃

ε2

] ∫ t′
t
θs ds.

Next, we take the inverse Laplace transform of

f̂(t, u; t′, ω, η, ξ) = A
α+2+2κ̃

ε2
t exp

(
−

ξu

At+ Ctξ

)
(At+ Ctξ)

−2α−2−2κ̃
ε2

to obtain

f(t, u; t′, ω, η, u′) =
A

3
2+c+

κ̃
ε2

t

2πiCt

∫ τ+i∞

τ−i∞
e
u′(p−At)

Ct p−2c−1e
−u(p−At)

Ctp dp

=
A

3
2+c+

κ̃
ε2

t e
−u+Atu

′
Ct

2πiCt

∫ τ+i∞

τ−i∞
e
u′p
Ct p−2c−1e

uAt
Ctp dp

=
A

3
2−c+

κ̃
ε2

t

Ct
e
−u+Atu

′
Ct

(
Atu

′

u

)c
I2c

(
2

Ct

√
Atuu

′
)
.

Expressed in terms of v and v′, g is found to be

g(t, v; t′, ω, η, v′) = ea(t
′−t)At

Ct
exp

(
−
Atv+ v′

Ctvv′

)
1

(v′)2

(
Atv

v′

)1
2+

κ̃
ε2
I2c

 2

Ct

√
At

vv′

 .
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Proof of the formula for h

h(t, v; t′, ω, η) =
∫ ∞

0
g(t, v; t′, ω, η, v′) dv′

= ea(t
′−t)At

Ct

∫ ∞

0
e
−u+Atu

′
Ct

(
Atu

′

u

)1
2+

κ̃
ε2
I2c

(
2

Ct

√
Atuu

′
)

du′

=
e
a(t′−t)− u

Ct

Ctu
1
2+

κ̃
ε2

∫ ∞

0
e
− z
Ctz

1
2+

κ̃
ε2I2c

(
2
√
uz

Ct

)
dz,

where z = Atu
′. Thanks to the closed form formula for the inverse

Laplace transform of tιIς(λ
√
t), we have∫ ∞

0
e−sttιIς(λ

√
t) dt =

Γ(ϕ)

Γ(ψ)

Xς/2

s1+ι
M(ϕ, ψ,X),

where ϕ = 1+ ι+ ς/2, ψ = 1+ ς, X = λ2

4s and R(ϕ, s) > 0, we obtain
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h(t, v; t′, ω, η) = e
a(t′−t)− u

Ct
Γ(1− α)

Γ(2c+1)

(
u

Ct

)α̃
M

(
1− α,2c+1,

u

Ct

)

= ea(t
′−t)Γ(β̃ − α̃)

Γ(β̃)

(
u

Ct

)α̃
M

(
α̃, β̃,−

u

Ct

)

= ea(t
′−t)Γ(β̃ − α̃)

Γ(β̃)

(
1

Ctv

)α̃
M

(
α̃, β̃,−

1

Ctv

)
.

Here,

α̃ = −
1

2
−
κ̃

ε2
+ c, and β̃ = 1+ 2c.

Note that the second equality follows from the identity:

M(a, b, z) = ezM(b− a, b,−z).
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Heston model

S0 T r q B N λ η v̄ v0
100 1.5 0.015 0 0.087 300 2 0.375 0.09 0.087

Parameter values in the Heston model and finite-maturity discrete timer options

K ρ Hilbert MC RE(%)
-0.5 17.6905 17.6927 -0.0124

90 0 17.5517 17.5551 -0.0194
0.5 17.4910 17.4882 0.0160
-0.5 12.3996 12.4099 -0.0830

100 0 12.2804 12.2909 -0.0854
0.5 12.2647 12.2692 -0.0367
-0.5 8.4174 8.4313 -0.1649

110 0 8.3503 8.3634 0.1566
0.5 8.3716 8.3774 -0.0692

Comparison of the numerical results for the finite-maturity discrete

timer call options for varying strike prices K and correlation values ρ

obtained from the fast Hilbert transform algorithm with the bench-

mark results obtained using the Monte Carlo method (MC) under

the Heston model.
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3/2-model

S0 T r q B N λ η v̄ v0
100 1.5 0.015 0 0.087 200 22.84 8.56 0.218 0.087

Parameter values in the 3/2 model and finite-maturity discrete timer options

K ρ Hilbert MC RE(%)
-0.5 17.7155 17.7383 -0.1285

90 0 17.5778 17.5892 -0.0648
0.5 17.4923 17.5016 -0.0531
-0.5 12.4366 12.4594 -0.1830

100 0 12.3195 12.3328 -0.1078
0.5 12.2759 12.2856 -0.0790
-0.5 8.4608 8.4802 -0.2287

110 0 8.3951 8.4063 -0.1332
0.5 8.3897 8.3962 -0.0774

Comparison of the numerical results for finite-maturity discrete timer

call options for varying strike prices K and correlation values ρ ob-

tained from the fast Hilbert transform algorithm with the benchmark

results obtained using the Monte Carlo method (MC) under the 3/2

stochastic volatility model.
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Sensitivity analysis on volatility of variance η and correlation coeffi-

cient ρ under the Heston model

• The price function may not be a monotonically increasing func-

tion of η.

• When ρ = −0.5, the discrete timer call option price firstly in-

creases and then decreases with increasing value of η.

• When ρ = 0.5, the discrete timer call option price is a decreasing

function of η.
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Sensitivity analysis under the Heston model

ρ η K = 90 K = 94 K = 98 K = 102 K = 106 K = 110
0.15 17.6571 15.3986 13.3621 11.5434 9.9315 8.5091

-0.5 0.3 17.7028 15.4356 13.3888 11.5585 9.9342 8.4989
0.45 17.6654 15.3651 13.2840 11.4197 9.7630 8.2986
0.15 17.5859 15.3234 13.2845 11.4650 9.8537 8.4333

0.5 0.3 17.5453 15.2842 13.2475 11.4307 9.8226 8.4056
0.45 17.4522 15.1898 13.1569 11.3472 9.7483 8.3413

Comparison of the numerical values for finite-maturity discrete timer

call option prices with varying values of strike prices, volatility of

variance and correlation coefficient under the Heston model.
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Plot of the finite-maturity discrete timer call option prices against

variance budget B. The discrete timer call option price tends to

that of the vanilla European call option (shown in the dashed line)

when B is sufficiently large.
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Plot of the finite-maturity discrete timer call option prices against

number of monitoring instants N . The dashed line represents the

finite-maturity timer call option price under continuous monitoring.
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Plot of the finite-maturity discrete timer call option price versus ma-

turity (mandated) under two different values of the variance budget.

The price sensitivity to maturity can be quite significant for short-

lived timer options.
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Conclusion

• Assuming perpetuity, we manage to derive closed form price for-

mula of a timer option in terms of a triple integral. This is done

by performing integration of the Black-Scholes type formula with

respect to the joint law of functionals of the instantaneous vari-

ance.

• By decomposing a timer option into a portfolio of timerlets,

we manage to price a finite-maturity timer option based on the

explicit representation of the joint characteristic function of log

asset price and its integrated variance.

• Our numerical tests on pricing the finite-maturity discrete timer

options under the Heston model and 3/2 model demonstrate

high level of numerical accuracy and robustness of the fast

Hilbert algorithm for pricing options with exotic barrier feature.
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