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Agenda

1. Saddlepoint approximations

• Steepest descent approach

• Lugannani-Rice formula for approximating tail probability: P[X ≥ K ]

• Exponential tilting approach for approximating tail expectation: E [(X − K)+]

2. Pricing VIX derivatives

• Modified saddlepoint methods

• Approximate analytic pricing under affine stochastic volatility models with jumps

3. Pricing options on discrete realized variance

• Analytic approximation based on small time asymptotic approximation of the Laplace
transform of discrete realized variance

Reference

Saddlepoint Approximation Methods in Financial Engineering, Y.K. Kwok and W.D.
Zheng, Springer (2018).
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Saddlepoint point

Inside the domain of analyticity of h(z) = φ(x , y) + iψ(x , y), z = x + iy , any stationary

point of φ(x , y) = Re h(z), where
∂φ

∂x
=
∂φ

∂y
= 0, is a saddlepoint.
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Complex moment generating functions and cumulant generating functions

The complex moment generating function of a random variable X is defined by

M(z) =

∫ ∞
−∞

ezuf (u) du, where z = x + iy ,

where f (u) is the density function of X . This may be considered as the generalized
bilateral Laplace transform of f (u).

(i) When y = 0, we recover the real moment generating function M(x).

(ii) When x = 0, M(iy) =

∫ ∞
−∞

e iyuf (u) du is the characteristic function.

We take M(z) to be analytic in some open vertical strip G containing the imaginary axis.
In this way, the generalized characteristic function is also analytic.

The cumulant generating function κ(z) is logM(z).
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Domain of analyticity of κ(z)

κ(z) is assumed to be analytic in some open vertical strip G = {z : α− < Re(z) < α+}
in the complex plane that contains the imaginary axis, where α− < 0 and α+ > 0; and
both α− and α+ can be infinite.

k

a- a+

The Bromwich path is a vertical infinite line segment that lies completely inside the
domain of analyticity G .
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κx(z) and tail probabilities and expectation

Let X be any random variable with cumulant generating function κX (z). For any K ∈ R,
the density, tail probability, tail expectation and expected shortfall of X are given by the
following Laplace integrals:

Density

pX (K) =
1

2πi

∫ γ+i∞

γ−i∞
eκX (z)−zK dz , γ ∈ (α−, α+);

Tail probability

P[X > K ] =
1

2πi

∫ γ+i∞

γ−i∞

eκX (z)−zK

z
dz , γ ∈ (0, α+);

Tail expectation (call option pricing)

E
[
(X − K)+] =

1

2πi

∫ γ+i∞

γ−i∞

eκX (z)−zK

z2
dz , γ ∈ (0, α+);

Expected shortfall (risk measure in credit portfolios)

E
[
X1{X>K}

]
=

1

2πi

∫ γ+i∞

γ−i∞
κ′X (z)

eκX (z)−zK

z
dz , γ ∈ (0, α+).
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Relation between tail expectation and expected shortfall

E [(X − K)+] = E [X1{X>K}]− KP[X > K ]

=
1

2πi

∫ α+i∞

α−i∞

eκX (z)−zK

z
[κ′X (z)− K ] dz

=
1

2πi

∫ α+i∞

α−i∞

eκX (z)−zK

z
(µ− K) dz +

1

2πi

∫ α+i∞

α−i∞
eκX (z)−zK κ

′
X (z)− µ

z
dz .

In the last three Bromwich integrals, the choice of γ > 0 or γ < 0 would require
adjustment due to the contribution from the isolated singularity z = 0.

For example, the modified tail expectation formula is

E
[
(X − K)+] = κ′′X (0)− K +

∫ γ̂+i∞

γ̂−i∞

eκX (z)−zK

z2
dz , γ̂ ∈ (γ−, 0).

The saddlepoint approximation approach is used to derive approximation formulas for the
above Bromwich integrals.

Yue Kuen Kwok (HKUST) Saddlepoint Methods for Discrete Variance Options 7 / 46



Steepest Descent Method

We derive an asymptotic expansion of the complex integral

I (λ) =

∫
C

h(z)eλf (z) dz ,

where C is a contour in the complex plane, h(z) and f (z) are analytic functions in a
domain D containing C . Recall that the zeros of f ′(z) are the saddlepoints of f (z).
Here, λ is taken to be real positive and large in value.

As λ is positive and large, we expect that the value of I (λ) is dominated by the
saddlepoint point with the largest value in Re f . Let that be the simple saddlepoint z0.

We deform C to C̃ that passes through the saddlepoint z0. For z on C̃ that is near z0,
we approximate f (z) and h(z) by

f (z) ≈ f (z0) +
f ′′(z0)

2
(z − z0)2 and h(z) ≈ h(z0).

The choice of the local quadratic approximation of f (z) at z0 implicitly implies the use of
the Gaussian base distribution as an approximation.
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Steepest Descent Method

On the deformed path C̃ that passes z0, we write

z − z0 = re iθ and f ′′(z0) = |f ′′(z0)|e iψ,

So that f ′′(z0)(z − z0)2 =
∣∣f ′′(z0)

∣∣ e i(2θ+ψ). We choose θ along the steepest descent path

where e i(2θ+ψ) = −1 or θ = −ψ
2
± π

2
. For large positive λ and on the steepest descent

path, the dominant contribution to the integral can be computed by a local computation
in the neighborhood of z0 since the modulus of eλf (z) is negligible elsewhere.

We extend the limits of integration with respect to r to be infinity. As λ→∞, we have

I (λ) ≈ h(z0)eλf (z0)

∫ ∞
−∞

e
λ
2
|f ′′(z0)|r2e i(2θ+ψ)

e iθ dr .

By following the steepest descent path and evaluating the Gaussian integral, we obtain
the asymptotic expansion

I (λ) ≈ h(z0)eλf (z0)e iθ
∫ ∞
−∞

e−
λ
2
|f ′′(z0)|r2

dr = h(z0)eλf (z0)e iθ
√

2π

λ|f ′′(z0)| .
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Lugannani-Rice formula

The Lugannani-Rice saddlepoint approximation formula for P[X > x ] is given by

P(X > x) ≈


1− Φ(ŵ) + φ(ŵ)

[
1

ẑ
√
κ′′(ẑ)

− 1

ŵ

]
, x 6= E [X ] = κ′(0)

1

2
− 1

6
√

2π

κ′′′(0)

κ′′(0)3/2
, x = E [X ] = κ′(0)

where ẑ solves the saddlepoint equation:

κ′(z) = x ,

and ŵ = sgn(ẑ)
√

2[ẑx − κ(ẑ)]. Here, Φ(·) and φ(·) are the normal distribution and
normal density, respectively.

Note that when x = E [X ] = κ′(0), we have ẑ = ŵ = 0. The alternative formula under
this scenario is derived by taking the asymptotic limits: ẑ → 0 and ŵ → 0.

Remark The formula is derived using the Gaussian base distribution approximation of X
around the saddlepoint. It can be generalized to other base distributions that may fit the
underlying base distribution better.
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Proof of Lugannani-Rice formula

Proof. Provided that the saddlepoint ẑ exists in (0, α+), we choose the Bromwich path
to pass through ẑ and observe

P[X > x ] =
1

2πi

∫ ẑ+i∞

ẑ−i∞

eκ(z)−zx

z
dz .

Under the choice of the Gaussian base distribution (quadratic polynomial approximation
of mgf), we set

[κ(z)− zx ]− [κ(ẑ)− ẑx ] =
(w − ŵ)2

2

and
ŵ 2

2
= −[κ(ẑ)− ẑx ].

so the two functions match their values at w = 0 with z = 0 and w = ŵ with z = ẑ .

Also, we force ŵ and ẑ to have the same sign, so ŵ = sgn(ẑ)
√

2[ẑx − κ(ẑ)].
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Proof of Lugannani-Rice formula (continued)

We adopt the change of variable from z to w where κ(z)− zx =
w 2

2
− wŵ . This gives

P[X > x ] =
1

2πi

∫ ŵ+i∞

ŵ−i∞
e

w2

2
−wŵ 1

z(w)

dz(w)

dw
dw .

Since z = 0 when w = 0, the term 1
z(w)

dz(w)
dw

has a singularity at w = 0. Near z = ẑ and
w = ŵ , it can be shown that z and w have linear relationship.
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Proof of Lugannani-Rice formula (continued)

We perform the following decomposition to isolate the singularity at w = 0, where

P[X > x ] =
1

2πi

∫ ŵ+i∞

ŵ−i∞

e
w2

2
−wŵ

w
dw +

1

2πi

∫ ŵ+i∞

ŵ−i∞
e

w2

2
−wŵ

[
1

z(w)

dz(w)

dw
− 1

w

]
dw .

The value of the first integral is known to be 1− Φ(ŵ), where Φ(·) is the standard
normal distribution function.

For the second integral, the integrand is analytic in the vertical strip in the complex
plane. We consider the local approximation at z = ẑ (or equivalent w = ŵ), where

1

z(w)

dz(w)

dw
− 1

w
≈ 1

ẑ

dz(ŵ)

dw
− 1

ŵ
=

1

ẑ

1√
κ′′(ẑ)

− 1

ŵ
.

We differentiate the transformation relation twice and substitute w = ŵ , which gives

dz

dw

∣∣∣∣
w=ŵ

=
1√
κ′′(ẑ)

.
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Esscher exponential tilting technique

We apply the exponential tilting technique to find the relation between tail expectation
and tail probability. The distribution F (x ; θ) of the θ-tilted distribution of X is related to
F (x) by

dF (x ; θ) = eθx−κ(θ) dF (x).

The cgf of the Q-tilted distribution κθ(z) is related to κ(z) via

κθ(z) = κ(z + θ)− κ(θ).

When θ = 0, we observe κ(0) = 0 and recover F (x ; 0) = F (x). Also, we have

1− F (K ; θ) =
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z+θ)−κ(θ)−zK

z
dz , 0 < ξ < γ+ − θ.
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Tail expectation and derivative of the θ-tilted distribution function

Differentiating both sides of the above equation with respect to θ and setting θ = 0, we
obtain

− ∂F (K ; θ)

∂θ

∣∣∣∣
θ=0

=
1

2πi

∫ ξ+i∞

ξ−i∞

eκ(z)−zK

z
[κ′(z)− κ′(0)] dz .

Combining these results, the tail expectation is given by

E [(X − K)+] = [κ′(0)− K ][1− F (K)]− ∂F (K ; θ)

∂θ
|θ=0

≈ (µ− K)P[X > K ]− ∂F̃ (K ; θ)

∂θ
|θ=0,

where we approximate F (K ; θ) by F̃ (K ; θ), taken to be the saddlepoint approximation to
the distribution function of the exponentially Q-tilted distribution.
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Extension to any arbitrary base distribution

We extend the saddlepoint approximation formula for tail expectation to an arbitrary
base distribution, whose cgf is denoted by κ0(z). We apply the modified
Legendre-Fenchel transformation based on κ0(z), where the transformation of variables
from z to w is defined by

κ0(w)− wκ′0(ŵ) = κ(z)− zK ,

where ŵ is first determined via the solution of the following equation

κ0(w)− wκ′0(w) = κ(ẑ)− ẑK .

Here, ẑ is the saddlepoint that solves κ′(z) = K .

It is necessary to compute ∂F̃ (K ;θ)
∂θ

, where F̃ (K ; θ) is the saddlepoint approximation to the
distribution function of the exponentially θ-tilted distribution using the base distribution
with cgf κ0(z).
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Saddlepoint approximation to tail expectation under non-Gaussian base

Let f0(x) and F0(x) denote the respective density function and distribution function of
the non-Gaussian base distribution with cgf κ0(z). For E [X ] 6= K , the saddlepoint
approximation to tail expectation E [(X − K)+] based on κ0(z) is found to be

E [(X − K)+]

≈ [κ′(0)− K ][1− F̃ (K)]

+ f0
(
κ′0(ŵ)

){
[K − κ′(0)]

[
1

ŵ
− 1

ŵ 3κ′′0 (ŵ)
− κ′′′0 (ŵ)

2ŵκ′′0 (ŵ)
3
2 µ̂

]
+

√
κ′′0 (ŵ)

ẑµ̂

}

+ f ′0
(
κ′0(ŵ)

)
[K − κ′(0)]

[
1

ŵ 2
−
√
κ′′0 (ŵ)

ŵ µ̂

]
, E [X ] 6= K ,

where ŵ is the solution to eq.(2.5), µ̂ = ẑ
√
κ′′(ẑ), ẑ is the saddlepoint that satisfies

κ′(z) = K and

F̃ (K) = F0(κ′0(ŵ)) + f0(κ′0(ŵ))

{
1

ŵ
− 1

ẑ

[
κ′′0 (ŵ)

κ′′(ẑ)

] 1
2

}
.

Here F̃ (K) is the saddlepoint approximation formula of tail probability.
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Degenerate case: E [X ] = K

When E [X ] = K , the above saddlepoint approximation formula becomes degenerate
since ẑ = ŵ = 0. By considering the asymptotic limits under ŵ → 0 and ẑ → 0, the
corresponding saddlepoint approximation formula becomes

E [(X − K)+] ≈ f0(κ′0(0))

{ √
κ′′0 (0)

24
√
κ′′(0)

[
κ′′′(0)2

κ′′(0)2
− κ′′′′(0)

κ′′(0)

]

+

√
κ′′(0)

8
√
κ′′0 (0)

[
κ′′′0 (0)2

κ′′0 (0)2
− κ′′′′0 (0)

κ′′0 (0)

]
+

1

12

κ′′′0 (0)

κ′′0 (0)

κ′′′(0)

κ′′(0)
+
√
κ′′0 (0)κ′′(0)

}

+
f ′0 (κ′0(0))

√
κ′′(0)κ′′0 (0)

6

[
κ′′′(0)

κ′′(0)
3
2

− κ′′′0 (0)

κ′′0 (0)
3
2

]
, E [X ] = K .
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Relative errors for calculating tail expectation

Underlying random variable is Gamma (α, β), where density is

fG (x) =
1

Γ(α)βα
xα−1e−x/β , Γ(α) =

∫ ∞
0

ettα−1 dt.

Comparison of relative errors for calculating tail expectation against different levels of
kurtosis. “Normal” is the relative error using the standard Gaussian base, “IG (1)” and
“IG(2)” are the relative errors computed by the Zheng-Kwok formula and
Huang-Oosterlee formula using the inverse Gaussian base distribution, respectively.

It is remarkable that the relative errors fall within 0.2% even with excessive kurtosis.
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VIX derivatives

VIX (volatility index) is calculated as 100 times the square root of the expected 30-day
variance of the rate of return of the forward price of the S&P 500 index, where

VIX = 100
√

forward price of realized cumulative variance.

Suppose the forward price Ft of the S&P index under a risk measure Q follows

dFt

Ft
= σt dWt so that d lnFt = −σ

2
t

2
dt + σt dWt .

Subtracting the two equations, we obtain the cumulative variance over [0,T ] under
continuous time model as follows:

dFt

Ft
− d lnFt =

σ2
t

2
dt, so

∫ T

0

σ2
t dt = 2

[∫ T

0

dFt

Ft
− ln

FT

F0

]
.

We compute EQ

[∫ T

0

σ2
t dt

]
, visualized as the forward price of the realized cumulative

variance of S&P index over [0,T ].
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Historical evolution of the VIX index (Year 2006-2010)

• The lowest value was 9.89 on Jan. 24, 2007, called “calm before the storm”.

• On October 24, 2008, the VIX reached an intraday value of 89.53.

• In January 2010, we witnessed the Greek debt crisis.
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VIX futures formula as specified by the Chicago Board of Options Exchange

As specified by the Chicago Board of Options Exchange, the formal definition of
VIX(t, t + τ̂) is given by

VIX2(t, t + τ̂) =
2

τ̂

∑
i

∆Xi

X 2
i

er τ̂Qi (Xi )−
1

τ̂

[
Ft(t + τ̂)

X0
− 1

]2

,

where τ̂ = 30/365, Qi (Xi ) is the price of the out-of-the-money SPX option with strike
Xi , and X0 is the highest strike below the index forward price Ft(t + τ̂). Here, all index
options and forward are maturing at t + τ̂ .

We consider the Taylor expansion of ln
St+τ̂

Ft
and the integral representation of the

remainder term

ln
St+τ̂

Ft
=

St+τ̂ − Ft

Ft
−
∫ Ft

0

1

K 2
(K − St+τ̂ )+dK −

∫ ∞
Ft

1

K 2
(St+τ̂ − K)+dK .

By taking the continuous limit of the above discretized sum of the out-of-the-money SPX
options, we obtain

VIX2
t = − 2

τ̂
EQ
t

[
ln

St+τ̂

Ster τ̂

]
.
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Heston affine stochastic volatility models with simultaneous jumps (SVSJ)

Under a risk neutral measure Q, the joint dynamics of stock price St and its
instantaneous variance Vt under the affine SVSJ model assumes the form

dSt

St
= (r − λm)dt +

√
Vt dW

S
t + (eJ

S

− 1) dNt ,

dVt = κ(θ − Vt)dt + ε
√
Vt dW

V
t + JVdNt ,

where W S
t and W V

t are a pair of correlated standard Brownian motions with
dW S

t dW
V
t = ρ dt, and Nt is a Poisson process with constant intensity λ that is

independent of the two Brownian motions.

JS and JV denote the random jump sizes of the log price and variance, respectively.

These random jump sizes are assumed to be independent of W S
t , W V

t and Nt .

Yue Kuen Kwok (HKUST) Saddlepoint Methods for Discrete Variance Options 23 / 46



VIX futures expressed as expectation

The above conditional expectation can be shown to be (Zhu and Lian, 2012)

VIX2
t = aVt + b,

where

a =
1− e−κτ̂

κτ̂
, b = 2λ

[
µ̄− (µS + ρJµV )

]
+

(
θ +

µVλ

κ

)
(1− a) .

The time-t price of the T -maturity VIX futures is given by

F (Vt , t) = EQ
t [VIXT ] = EQ

t [
√

aVT + b].

Provided that Vt process is affine, we can derive a system of ordinary differential
equations to determine a(t) and b(t).
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Joint moment generating function

Let Xt = ln St . The joint moment generating function (mgf) of Xt and Vt is defined to be

E [exp(φXT + bVT + γ)],

where φ, b and γ are constant parameters.
Let U(Xt ,Vt , t) denote the non-discounted time-t value of a contingent claim with the
terminal payoff function: UT (XT ,VT ), where T is the maturity date. Let τ = T − t,
U(X ,V , τ) is governed by the following partial integro-differential equation (PIDE):

∂U

∂τ
=

(
r −mλ− V

2

)
∂U

∂X
+ κ(θ − V )

∂U

∂V

+
V

2

∂2U

∂X 2
+
ε2V

2

∂2U

∂V 2
+ ρεV

∂2U

∂X∂V

+ λE
[
U(X + JS ,V + JV , τ)− U(X ,V , τ)

]
.

Thanks to the affine structure, U(X ,V , τ) admits an analytic solution of the form

U(X ,V , τ) = exp(φX + B(τ, q)V + Γ(τ, q) + Λ(τ, q)),

where q = (φ b γ)T .
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Riccati system of ordinary differential equations

The parameter functions B(τ, q), Γ(τ, q) and Λ(τ, q) satisfy the following Riccati system
of ordinary differential equations:

∂B
∂τ

= − 1
2
(φ− φ2)− (κ− ρεφ)B + ε2

2
B2

∂Γ
∂τ

= rφ+ κθB
∂Λ
∂τ

= λ
(
E [exp(φJS + BJV )− 1]−mφ

)
with the initial conditions: B(0) = b, Γ(0) = γ and Λ(0) = 0.

Suppose we assume that JV ∼ exp(1/η) and JS follows

JS |JV ∼ Normal(ν + ρJJ
V , δ2),

which is the Gaussian distribution with mean ν + ρJJ
V and variance δ2, we obtain

m = E [eJ
S

− 1] =
eν+δ2/2

1− ηρJ
− 1,

provided that ηρJ < 1. Under the above assumptions on JS and JV , the parameter
functions can be found analytically.
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Calculation of mgf

Let f (z ; τ,Vt) denote the marginal mgf of VT , where τ = T − t is the time to maturity.
Thanks to the affine structure of the governing dynamics equation of Vt , we are able to
obtain

f (z ; τ,Vt) = EQ
t

[
ezVT

]
= eB(z;τ)Vt+Γ(z;τ)+Λ(z;τ), Re z < α+,

where

B(z ; τ) =
2κz

σ2
V (1− eκτ )z + 2κeκτ

Γ(z ; τ) = −2κθ

σ2
V

log
(

1 +
σ2
V z

2κ

(
e−κτ − 1

) )
Λ(z ; τ) =

2λµV

2κµV − σ2
V

log

(
1 +

z(σ2
V − 2κµV )

2κ(1− µV z)
(e−κτ − 1)

)
,

and α+ is determined by requiring the arguments of the above logarithm terms to be
greater than zero.
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Calculation of mgf

The corresponding mgf of X is seen to be

E
[
ezX
]

= ebzE
[
eazVT

]
= ebz f (az ; τ,Vt), Re z < α+;

and the cgf of X is given by

κ(z) = log E
[
ezX
]

= bz + log f (az ; τ,Vt)

= bz + B(az ; τ)Vt + Γ(az ; τ) + Λ(az ; τ), Re z < α+.

To find the saddlepoint approximation of E [
√
X ], we start with the Bromwich integral

representation of E [
√
X ]. It can be shown that

E [
√
X ] =

∫ ∞
0

√
xp(x) dx =

∫ ∞
0

√
x

1

2πi

∫ γ+i∞

γ−i∞
eκ(z)−zx dzdx

=
1

2πi

∫ γ+i∞

γ−i∞
eκ(z)

∫ ∞
0

√
xe−zx dzdx

=
1

4
√
πi

∫ γ+i∞

γ−i∞

eκ(z)

z3/2
dz

=
1

4
√
πi

∫ γ+i∞

γ−i∞
eκ(z)− 3

2
log z dz , γ ∈ (0, α+).
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Saddlepoint equation

The fractional power
1

z3/2
is absorbed into the exponent as e−

3
2

log z . We find the positive

saddlepoint ẑ within the domain (0, α+) that solves the modified saddlepoint equation:

κ′(z)− 3

2z
= 0,

where

κ′(z) = b + a
dB

dz
(az ; τ)Vt + a

dΓ

dz
(az ; τ) + a

dΛ

dz
(az ; τ).

The corresponding first order derivatives of B, Γ and Λ are found to be

dB

dz
(z ; τ) =

4κ2eκτ

[σ2
V (1− eκτ )z + 2κeκτ ]

2

dΓ

dz
(z ; τ) =

2κθ(eκτ − 1)

σ2
V (1− eκτ )z + 2κeκτ

dΛ

dz
(z ; τ) =

2λµV (eκτ − 1){[
σ2
V (1− eκτ )− 2κµV

]
z + 2κeκτ

}(
1− µV z

) .
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Taylor expansion of the exponent in the Bromwich integral for VIX futures

Suppose that the positive saddlepoint ẑ lies within the domain (0, α+), we perform the
deformation of the Bromwich contour through ẑ to give

E [
√
X ] =

1

4
√
πi

∫ ẑ+i∞

ẑ−i∞
eκ(z)− 3

2
log z dz .

The conventional saddlepoint approximation methods work with the approximation of
κ(z)− zK . With the fractional power z3/2 in the denominator, we introduce −3/2 log z
into the exponent. The Taylor expansion of the exponent in the above integrand at z = ẑ
is seen to be

κ(z)− 3

2
log z = κ(ẑ)− 3

2
log ẑ +

[
κ′′(ẑ) +

3

2ẑ2

]
(z − ẑ)2

2
+ · · · .

Substituting the above Taylor expansion into the Bromwich integral and performing
evaluation of the resulting Gaussian integral yields the first order saddlepoint
approximation formula:
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Saddlepoint formulas for VIX futures

E [
√
X ] ≈ 1

4
√
πi

∫ ẑ+i∞

ẑ−i∞
e
κ(ẑ)− 3

2
log ẑ+

[
κ′′(ẑ)+ 3

2ẑ2

]
(z−ẑ)2

2 dz

=
1

4
√
π

eκ(ẑ)− 3
2

log ẑ

∫ ∞
−∞

e
−
[
κ′′(ẑ)+ 3

2ẑ2

]
y2

2 dy =

√
2

4

eκ(ẑ)/ẑ3/2√
κ′′(ẑ) + 3

2ẑ2

.

By expanding κ(z)− 3

2
log z up to fourth order power in (z − ẑ), the corresponding

second order saddlepoint approximation formula is given by

E [
√
X ] ≈

√
2

4

eκ(ẑ)/ẑ3/2√
κ′′(ẑ) + 3

2ẑ2

(
1 + R

)
,

where

R =
1

8

κ′′′′(ẑ) + 9
ẑ4[

κ′′(ẑ) + 3
2ẑ2

]2 −
5

24

[
κ′′′(ẑ)− 3

ẑ3

]2[
κ′′(ẑ) + 3

2ẑ2

]3 .

With symbolic computer languages, it is still manageable to perform evaluation of higher
order derivatives at ẑ .
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Numerical tests for pricing VIX futures

The percentage errors (PE%) using the second order saddlepoint approximation formula
is well within 0.4%.
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VIX options

The VIX call option price is

C(Vt , t) = e−r(T−t)EQ
t

[
(VIXT − K)+]

= e−r(T−t)EQ
t

[
(
√

aVT + b − K)+]
= e−r(T−t)EQ

t

[
(
√
X − K)+].

Let X be a nonnegative random variable, whose cgf as denoted by κ(z) is analytic in
some open vertical strip {z ∈ C : α− < Re z < α+}, where α− < 0 and α+ > 0. The
Bromwich integral representation of E [(

√
X − K)+] is given by

E
[
(
√
X − K)+] =

∫ ∞
K2

(
√
x − K)p(x) dx

=
1

2πi

∫ γ+i∞

γ−i∞
eκ(z)

(∫ ∞
K2

√
xe−zx dx −

∫ ∞
K2

Ke−zx dx

)
dz

=
1

4
√
πi

∫ γ+i∞

γ−i∞

eκ(z)
[
1− erf(

√
zK)

]
z3/2

dz , γ ∈ (0, α+),

where erf(x) =
2√
π

∫ x

0

e−t2

dt.
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Saddlepoint formula for VIX options

To derive the saddlepoint approximation formula, we start by expressing the integrand of
the Bromwich integral as an exponential function as follows:

E
[
(
√
X − K)+] =

1

4
√
πi

∫ γ+i∞

γ−i∞
eκ(z)+g(z)− 3

2
log z dz ,

where g(z) = log
(
1− erf(

√
zK)

)
. The form of the Bromwich integral of the VIX call

option is similar to that of the VIX futures, except with an additional term g(z).
Accordingly, the modified saddlepoint equation is

κ′(z) + g ′(z)− 3

2z
= 0,

where

g ′(z) = − Ke−zK2

√
π
√
z
[
1− erf(

√
zK)

] .
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Saddlepoint formula for VIX options

Suppose that there exists a saddlepoint ẑ that lies within the domain (0, α+), by
deforming the contour to the vertical line that passes through ẑ , we obtain an alternative
integral representation as follows:

E
[
(
√
X − K)+] =

1

4
√
πi

∫ ẑ+i∞

ẑ−i∞
eκ(z)+g(z)− 3

2
log z dz , ẑ ∈ (0, α+).

The time-t price of the VIX call option is

C(Vt , t) ≈ e−r(T−t)

√
2

4

eκ(ẑ)+g(ẑ)
/

ẑ3/2√
κ′′(ẑ) + g ′′(ẑ) + 3

2ẑ2

.

One may apply similar procedure as that of the VIX futures to derive the second order
saddlepoint approximation formula.
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Numerical tests for pricing VIX options

Compared to VIX futures, the numerical accuracy of the saddlepoint approximation
formulas for pricing VIX options is less promising.
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Options on discrete realized variance

The terminal payoff of a put option on the discrete realized variance of asset price is
given by max(K − Vd(0,T ;N), 0), where K is the strike price and

Vd(0,T ;N) =
A

N

N∑
i=1

(
ln

Sti

Sti−1

)2

.

The annualized factor A is taken to be 252 for daily monitoring and {t0, t1, . . . , tN} is the
set of monitoring instants.

The moment generating function of Vd(0,T ;N) cannot be found readily under stochastic
volatility models, unlike that of the continuous realized variance.

Though the analytic expression of the cgf is not available, we deduce a useful analytic
approximation using the small time asymptotic approximation of the Laplace transform of
the discrete realized variance as a control.
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Tail expectations in terms of Bromwich integrals

Laplace integrals

Let κ(θ) and κ0(θ) denote the CGF of the random discretely sampled realized variance I
and I −K , respectively, where K represents the fixed strike. The two CGFs are related by
κ0(θ) = κ(θ)− Kθ. We write X = I − K and F0(x) as the distribution function of X .

Recall that the Fourier transform of the payoff of a call option on discrete realized

variance E [(I − K)1{I>K}] = E [X1{X>0}] is eκ0(t)

t2 . Consider the following tail
expectations expressed in terms of the following Laplace integrals:

Ξ1 = E [X1{X>0}] =
1

2πi

∫ τ1+i∞

τ1−i∞

eκ0(t)

t2
dt, τ1 ∈ (0, α+) where α+ > 0;

Ξ2 = −E [X1{X<0}] =
1

2πi

∫ τ2+i∞

τ2−i∞

eκ0(t)

t2
dt, τ2 ∈ (α−, 0) where α− < 0.

The contour is taken to be along a vertical line parallel to the imaginary axis. We write
the integrand as eκ0(t)−2 ln t .
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First order saddlepoint approximation

The first order saddlepoint approximation to Ξj , j = 1, 2, is given by

Ξj ≈ Ξ̂j =
eκ0(t̂j )/t̂2

j√
2π

[
2
t̂2
j

+ κ
(2)
0 (t̂j)

] , j = 1, 2,

where t̂1 > 0 (t̂2 < 0) is the positive (negative) root in (α−, α+) of the saddlepoint
equation:

κ′0(t)− 2/t = 0.

Note that Ξ1 − Ξ2 = µX , which is consistent with the put-call parity in option pricing
theory.

Suppose both roots t̂1 and t̂2 exist, we can use either the saddlepoint approximation
Ξ̂1 (Ξ̃1) or µX + Ξ̂2 (µX + Ξ̃2) to approximate the value of the call option.
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Second order Saddlepoint approximation

By performing the Taylor expansion of κ0(t)− 2 ln t up to the fourth order, we manage
to derive the second order saddlepoint approximation formulas. The second order
saddlepoint approximation to Ξj is given by

Ξ̃j = Ξ̂j(1 + Rj), j = 1, 2,

where the adjustment term Rj is given by

Rj =
1

8

κ
(4)
0 (t̂j) + 12t̂−4

j

[κ
(2)
0 (t̂j) + 2t̂−2

j ]2
− 5

24

[κ
(3)
0 (t̂j)− 4t̂−3

j ]2

[κ
(2)
0 (t̂j) + 2t̂−2

j ]3
, j = 1, 2.
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Small time asymptotic approximation to MGF

We consider the small time asymptotic approximation to the MGFs of the quadratic
variation process I (0,T ;∞) = 1

T
[lnST , lnST ] and discretely sampled realized variance

I (0,T ;N). The asymptotic limit of Vd(0,T ;N) is gamma distributed with shape
parameter N/2 and scale parameter 2V0/N.

For any u ≤ 0, their mgfs are found to be

lim
T→0+

MI (0,T ;∞)(u) = euV0 ,

lim
T→0+

MI (0,T ;N)(u) =

(
1− 2V0u

N

)−N/2

.

The difference MI (0,T ;N)(u)−MI (0,T ;∞)(u) is seen to be almost invariant with respect to
T . We use the above difference as a control and propose the following approximate MGF
formula:

M̂I (0,T ;N)(u) = MI (0,T ;∞)(u) +

(
1− 2V0u

N

)−N/2

− euV0 , u ∈ C−.
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Analytic formulas for the approximate cumulant generating function

Under an affine stochastic volatility model, MI (0,T ;∞)(u) can be derived analytically by
solving a Riccati system of equations.

κ̂I (0,T ;N)(u) = ln M̂I (0,T ;N)(u),

κ̂′I (0,T ;N)(u) =
M ′I (0,T ;∞)(u) + f1(u)

MI (0,T ;N)(u)
,

κ̂′′I (0,T ;N)(u) =
M ′′I (0,T ;∞)(u) + f2(u)

M̂I (0,T ;N)(u)
−

[M ′I (0,T ;∞)(u) + f1(u)]2

[M̂I (0,T ;N)(u)]2
,

where the sequence of functions fn(u) is defined by

fn(u) = V k
0

N
2

(
N
2

+ 1
)
· · ·
(
N
2

+ n
)(

N
2

)n (
1− 2V0u

N

)−N/2−n

, n = 1, 2, · · · .
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Numerical results

maturity (days) 5 10 15 20 40 60
strike (OTM) 0.9037 0.9222 0.9399 0.9568 1.0174 1.0683
SPA1 0.2885 0.2556 0.2530 0.2577 0.2840 0.3071
SPA2 0.2851 0.2545 0.2500 0.2500 0.2741 0.2986
MC 0.2794 0.2463 0.2404 0.2441 0.2732 0.2992
SE 0.0008 0.0007 0.0006 0.0006 0.0006 0.0007
strike (ATM) 1.1296 1.1527 1.1748 1.1960 1.2717 1.3354
SPA1 0.4579 0.4334 0.4367 0.4459 0.4865 0.5188
SPA2 0.4500 0.4255 0.4262 0.4336 0.4729 0.5079
MC 0.4490 0.4286 0.4309 0.4406 0.4828 0.5154
SE 0.0010 0.0009 0.0008 0.0008 0.0008 0.0008
strike (ITM) 1.3555 1.3833 1.4098 1.4352 1.5261 1.6024
SPA1 0.6483 0.6352 0.6455 0.6597 0.7129 0.7517
SPA2 0.6367 0.6240 0.6322 0.6450 0.6978 0.7385
MC 0.6402 0.6330 0.6429 0.6574 0.7094 0.7465
SE 0.0012 0.0010 0.0009 0.0008 0.0008 0.0009

Prices of put options on the daily sampled realized variance with varying strike prices and
maturities under the SVSJ model.
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Plots of percentage errors of saddlepoint point approximations

Plots of the percentage errors against moneyness for the one-month

(20 days) put options on daily sampled realized variance with dif-

ferent model parameters of the SVSJ model.

22

Plots of the percentage errors against moneyness for the one-month (20 days) put options
on daily sampled realized variance with different model parameters of the SVSJ model.

Yue Kuen Kwok (HKUST) Saddlepoint Methods for Discrete Variance Options 44 / 46



Conclusion

• Effective pricing of VIX futures and VIX options under stochastic volatility models.
Potential enhancement of numerical accuracy if non-Gaussian base distribution is
employed.

• We use the small time asymptotic approximation of the Laplace transform of
discrete realized variance as control to obtain the saddlepoint approximation method
for pricing options on discrete realized variance.

• In general, the second order saddlepoint approximation formulas provide reasonably
good approximation (with a small percentage error) to the values of derivatives even
when the option is deep out-of-the-money and under the choices of extreme
parameter values (high values of jump intensity λ and volatility of variance ε).

• The saddlepoint approximation formulas compute well with the Fourier transform
algorithm since the Fourier transform algortihm may give negative option prices
when the options are deep out-of-the-money.
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Remarks on implementation and related works

• Our saddlepoint formulas rely on the availability of cgf and their higher order
derivatives, together with the efficient solution of the saddlepoint equation. All these
analytic calculations can be achieved at acceptable efficiency with the use of
symbolic programming languages. On the other hand, the implementation of the
Fourier transform algorithms in option pricing may face with the challenge of finding
the appropriate damping factors.

• Ait-Sahalia and Yu (2006) use the Taylor expansion in small time (time interval of
the transition density of the time-homogeneous process) to obtain approximations of
the cgf and saddlepoints.

• Glasserman and Kim (2009) implement the saddlepoint approximation under the
general affine models by developing a procedure of numerically solving the Riccati
systems of ODEs and approximating the saddlepoints using the series inversion
technique.
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