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Product Nature of GMWB

• Variable annuities — deferred annuities that are fund-linked.

• The single lump sum paid by the policyholder at initiation is

invested in a portfolio of funds chosen by the policyholder —

equity participation.

• The GMWB allows the policyholder to withdraw funds on an

annual or semi-annual basis until the entire principal is returned.

• In 2004, 69% of all variable annuity contracts sold in the US

included GMWB option.
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Numerical example

• Let the initial fund value be $100,000 and the withdrawal rate

be 7% per annum. Suppose the investment account earns ten

percent in the first two years but earns returns of minus sixty

percent in each of the next three years.

Year Rate

earned

during

the year

Fund

before

with-

drawals

Amount

withdrawn

Fund after

with-

drawals

Guaranteed

withdrawals

remaining

balance
1 10% 110,000 7,000 103,000 93,000
2 10% 113,300 7,000 106,300 86,000
3 −60% 42,520 7,000 35,520 79,000
4 −60% 14,208 7,000 7,208 72,000
5 −60% 2,883 7,000 0 65,000

• At the end of year five before any withdrawal the value of the

fund, $2,883, is not enough to cover the withdrawal payment

of $7,000.
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The guarantee kicks in:

The value of the fund is set to be zero and the policyholder’s ten

remaining withdrawal payments are financed under the writer’s guar-

antee. The policyholder’s income stream of annual withdrawals is

protected irrespective of the market performance.

• If the market does well, then there will be funds left at pol-

icy’s maturity. However, if performance is bad the investment

account balance will have shrunk to zero before the principal is

repaid and will remain there.
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Numerical example revisited

Suppose the initial lump sum investment of $100,000 is used to

purchase 100 units of the mutual fund, so each unit worths $1,000.

• After the first year, the rate of return is 10% so each unit

is $1,100. The guaranteed withdrawal of $7,000 represent

$7,000/$1,100 = 6.364 units. The remaining number of units

of mutual fund is 100− 6.364 = 93.636 units.

• After the second year, there is another rate of return of 10%,

so each unit of mutual fund worths $1,210. The withdrawal of

$7,000 represents $7,000/$1,210 = 5.785 units, so the remain-

ing number of units = 87.851.
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• There is a negative rate of return of 60% in the third year,

so each unit of mutual fund worths $484. The withdrawal of

$7,000 represents $7,000/$484 = 14.463 units, so the remain-

ing number of unit = 73.388.

• Depending on the performance of the mutual fund, the total

number of units, withdrawal can be less than 100 (if the fund is

performing) or otherwise.

– In the former case, the holder receives the guaranteed total

withdrawal amount of $100,000 (neglecting time value) plus

the remaining units of mutual funds held at maturity.

– If the mutual fund is non-performing, then the total with-

drawal amount of $100,000 is guaranteed.
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How is the benefit funded?

• Percentage deduction from the account balance

— for a contract with a 7% withdrawal allowance, a typical

charge is around 40 to 50 basis points.

• Benefit can also be seen as a guaranteed stream of G per annum

plus a call option on the terminal account value WT . The strike

price of the call is zero.
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Static withdrawal model – continuous version

• The withdrawal rate G is fixed throughout the life of the policy.

• When the investment account value Wt ever reaches 0, it stays

at this value thereafter (absorbing barrier).

τ = inf{t : Wt = 0}, τ is the first passage time of hitting 0.

Under the risk neutral measure Q, the dynamics of Wt is gov-

erned by

dWt = (r − α)Wt dt + σWt dBt −G dt, t < τ

Wt = 0, t ≥ τ

W0 = w0,

where α is the proportional annual fee charge on the withdrawal

allowance.

policy value = EQ

[∫ T

0
Ge−ru du

]
+ EQ[e−rTWT ].
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To enhance analytic tractability, the restricted account value process

Wt is replaced by a surrogate unrestricted process W̃t at the expense

of introducing optionality in the terminal payoff (zero strike call

payoff). Consider the modified unrestricted stochastic process:

dW̃t = (r − α)W̃t dt−G dt + W̃t dBt

W̃0 = w0.

Solving for W̃t, we obtain

W̃t = Xt

(
w0 −G

∫ t

0

1

Xu
du

)

where

Xt = e

(
r−α+σ2

2

)
t+σBt

.
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Financial interpretation

Take the initial value of one unit of the fund to be unity for con-

venience. Here, Xt represents the corresponding fund value process

with X0 = 1.

• The number of units acquired at initiation is w0. The total

number of units withdrawn over (0, t] is given by G
∫ t
0

1
Xu

du.

• Under the unrestricted process assumption, W̃t may become neg-

ative when the number of units withdrawn exceeds w0. However,

in the actual case, Wt stays at the absorbing state of zero value

once the number of unit withdrawn hits w0.
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Lemma τ0 > T if and only if W̃T > 0.

=⇒ part. Suppose τ0 > T , then by the definition of the first passage

time, we have W̃T > 0.

⇐= part. Recall that

W̃t = Xt

(
w0 −

∫ t

0

G

Xu
du

)

so that

W̃t > 0 if and only if
∫ t

0

G

Xu
du < w0.

Suppose W̃T > 0, this implies
∫ T
0

G
Xu

du < w0. Since Xu ≥ 0, for any

t < T , we have
∫ t

0

G

Xu
du ≤

∫ T

0

G

Xu
du < w0.

Hence, if W̃T > 0, then W̃t > 0 for any t < T .
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Mathematical interpretation

Once the process W̃t becomes negative, it will never return to the

positive region. This is because when W̃t = 0, only the drift term

−G dt survives, which always pulls W̃t into the negative region.

Relation between WT and W̃T

We observe

WT = W̃T1{τ>T} = W̃T1{W̃T >0} = max(W̃T ,0).

Note that WT = 0 if and only if τ ≤ T .
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The terminal payoff is

max(W̃T ,0) = GXT

(
w0

G
−

∫ T

0

1

Xu
dx

)+

, x+ = max(x,0).

Defining Ut =
G

w0

∫ t

0

1

Xu
du and observing T =

w0

G
, we obtain

EQ[W̃+
T ] = w0EQ[XT (1− UT )+].

Here, Ut represents the fraction of units withdrawn up to time t,

which captures the path dependence of depletion of the investment

account due to the continuous withdrawal process.
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Dynamic continuous withdrawal model

Policyholder has the right to surrender the contract or to withdraw

a portion of the account value (partial surrender).

At: account balance of the guarantee

Clauses to discourage excessive withdrawals

• Percentage penalty charge applied on the excessive portion of

the withdrawal amount.

• An excessive withdrawal may result in a decrease in the guaran-

tee account greater than the withdrawal amount. The guarantee

account is reduced to

min(At, Wt)− γi∆t if γi > G.
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At is a non-negative and non-increasing {Ft}t≥0-adaptive process.

At initiation, A0 = w0; the withdrawal guarantee becomes insignifi-

cant when At = 0. As withdrawal continues, At decreases over the

life of the policy until it hits the zero value. At T, AT becomes zero.

The dynamics of the value of the investment account Wt follows

dWt = (r − α)Wt dt + σWt dBt + dAt, t < τ,

At = A0 −
∫ t

0
γs ds, 0 ≤ γs ≤ λ,

γs is the withdrawal rate process and λ is some upper bound.

Penalty charges are incurred when the withdrawal rate γ exceeds

the contractual withdrawal rate G.
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Supposing a proportional penalty charge k is applied on the portion

of γ above G, then the net amount received by the policyholder is

G + (1− k)(γ −G) when γ > G.

• Let f(γ) denote the rate of cash flow received by the policyholder

as resulted from the continuous withdrawal process, we then

have

f(γ) =

{
γ if 0 ≤ γ ≤ G
G + (1− k)(γ −G) if γ > G

.

The policyholder receives the continuous withdrawal cash flow f(γu)

du over (u, u+du) throughout the life of the policy and the remaining

balance of the investment account at maturity.
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Rational behavior of policyholder

• He chooses the optimal withdrawal policy dynamically so as to

maximize the present value of cash flows generated from hold-

ing the variable annuity policy and under the restricted class of

withdrawal policies.

• The no-arbitrage value V of the variable annuity with GMWB is

given by

V (W, A, t) = max
γ

Et

[
e−r(T−t) max(WT ,0) +

∫ T

t
e−r(u−t)f(γu) du

]
.

Here, γ is the control variable that is chosen to maximize the

expected value of the discounted cash flows.
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Hamilton-Jacobi-Bellman (HJB) equation

The governing equation for V is found to be

∂V

∂t
+ LV + max

γ
h(γ) = 0

where

LV =
σ2

2
W2 ∂2V

∂W2
+ (r − α)W

∂V

∂W
− rV

h(γ) = f(γ)− γ
∂V

∂W
− γ

∂V

∂A

=





(
1− ∂V

∂W
− ∂V

∂A

)
γ if 0 ≤ γ < G

kG +

(
1− k − ∂V

∂W
− ∂V

∂A

)
γ if γ ≥ G

.
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Write β = 1− ∂V
∂W − ∂V

∂A, then

h(γ) =





βγ if 0 < γ ≤ G

βγ − k(γ −G) if γ ≥ G
=





βγ if 0 < γ ≥ G

(β − k)γ + kG if γ ≥ G

(i) β ≤ 0

0 G

h(
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(ii) 0 < β < k

0 G

h(

(iii) β ≥ k

0 G

h(
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Penalty approximation

The function h(γ) is piecewise linear so its maximum value is achieved

at either γ = 0, γ = G or γ = λ.

Recall 0 ≤ γ ≤ λ. Note that

max
γ

h(γ) =





kG + λ

(
1− k − ∂V

∂W
− ∂V

∂A

)
if 1− ∂V

∂W
− ∂V

∂A
≥ k

(
1− ∂V

∂W
− ∂V

∂A

)
G if 0 < 1− ∂V

∂W
− ∂V

∂A
< k

0 if 1− ∂V

∂W
− ∂V

∂A
≤ 0

.
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We obtain the following equation for V :

∂V

∂t
+ LV + min

[
max

(
1− ∂V

∂W
− ∂V

∂A
,0

)
, k

]
G

+ λmax

(
1− k − ∂V

∂W
− ∂V

∂A
,0

)
= 0. (A)

The set of variational inequalities are given by

∂V

∂t
+ LV ≤ 0 (i)

∂V

∂t
+ LV + G

(
1− ∂V

∂W
− ∂V

∂A

)
≤ 0 (ii)

∂V

∂t
+ LV + kG + λ

(
1− k − ∂V

∂W
− ∂V

∂A

)
≤ 0 (iii)

and equality holds in at least one of the above three cases.
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For example, suppose 1 − ∂V
∂W − ∂V

∂A ≤ 0,maxγ h(γ) is achieved by

taking γ = 0 (corresponding to zero withdrawal rate). We have

equality for (i), and strict inequalities for (ii) and (iii). That is,

∂V

∂t
+ LV = 0

∂V

∂t
+ Lv + G

(
1− ∂V

∂W
− ∂V

∂A

)
< 0

∂V

∂t
+ LV + kG + λ

(
1− ∂V

∂W
− ∂V

∂A

)
< 0.

This corresponds to the continuation region with no withdrawal.
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• Similarly, when 0 < 1 − ∂V
∂W − ∂V

∂A < k, we have equality for (ii)

and strict inequalities for (i) and (iii). This corresponds to the

region with withdrawal at rate G.

• When ∂V
∂W +∂V

∂A ≤ 1−k, it is optimal to choose λ as the withdrawal

rate. We have strict equality for (iii). Suppose we take λ →∞,

then

∂V

∂W
+

∂V

∂A
= 1− k

in order to satisfy the strict equality in (iii).
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Linear complementarity formulation

To obtain V (W, A, t) from V (W, A, t), we allow the upper bound

λ on γ to be infinite. Conversely, Eq. (A) is visualized as the

corresponding penalty approximation

Taking the limit λ →∞, we obtain the following linear complemen-

tarity formulation of the value function V (W, A, t):

min
[
−∂V

∂t
− LV −max

(
1− ∂V

∂W
− ∂V

∂A
,0

)
G,

∂V

∂W
+

∂V

∂A
− (1− k)

]
= 0,

W > 0, 0 < A < w0, t > 0.

Remark It can be shown that the case γ = 0 should be ruled out so

that the above formulation can be simplified to

min
(
−∂V

∂t
− LV −

(
1− ∂V

∂W
− ∂V

∂A

)
G,

∂V

∂W
+

∂V

∂A
− (1− k)

]
= 0.
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Auxiliary conditions

• At maturity, the policyholder takes the maximum between the

remaining guarantee withdrawal net of penalty charge and the

remaining balance of the personal account.

V (W, A, T ) = max(W, (1− k)A)

• When either A = 0 or W → ∞, the withdrawal guarantee be-

comes insignificant. The value of the annuity becomes We−α(T−t).

V (W,0, t) = e−α(T−t)W,

V (W, A, t) → e−α(T−t)W as W →∞.

• When W = 0, the equity participation of the policy vanishes.

The pricing formulation reduces to a simplified optimal control

model with no dependence on W .

V (0, A, t) = V0(A, t).
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Analytic solution to V0(A, t)

• When W = 0, the equity participation of the policy vanishes.

• Let V0(A, t) be the value function of the annuity when W = 0,

which is the solution to the following linear complementarity

formulation

min
[
−∂V0

∂t
+ rV0 −max

(
1− ∂V0

∂A
,0

)
G,

∂V0

∂A
− (1− k)

]
= 0,

0 < A < A0,0 < t < T,

V0(A, T ) = (1− k)A and V0(0, t) = 0.
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Solution without the derivative constraint

First, we consider the solution of V0(A, t) without the inequality

constraint: ∂V0
∂A − (1 − k) ≥ 0. Together with the observation that

∂V0
∂A ≤ 1, the governing equation for V0(A, t) is given by

∂V0

∂t
−G

∂V0

∂A
− rV0 + G = 0, 0 ≤ t ≤ T,0 ≤ A ≤ A0,

with auxiliary conditions: V0(A, T ) = (1− k)A and V0(0, t) = 0.

If we define

W0(A, t) = V0(A, t)er(T−t) − G

r

[
er(T−t) − 1

]
,
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then W0(A, t) satisfies the prototype hyperbolic equation:

∂W0

∂t
−G

∂W0

∂A
= 0

with auxiliary conditions:

W0(A, T ) = (1− k)A and W0(0, t) = −G
r

[
er(T−t) − 1

]
.

The general solution to W0(A, t) is of the form

W0(A, t) = F (ξ), ξ = t +
A

G
,

where F is some function to be determined by the auxiliary condi-

tions. The characteristics of the hyperbolic equation are given by

the lines: ξ = t + A
G = ξ0, for varying values of ξ0.
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The characteristic lines are given by t +
A

G
= ξ0 for varying values

of ξ0. For ξ0 > T , the characteristic lines intersect the right vertical

boundary: t = T ; and for ξ0 ≤ T , the characteristics lines intersect

the bottom horizontal boundary: A = 0.
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The continuation region is limited to the region:

{(A, t) : A < −G

r
ln(1− k) and A < G(T − t)}.

Define

τ∗ = min
(
−ln(1− k)

r
, T − t

)
,

then the solution of V0(A, t) in the continuation region is given by

V0(A, t) =
G

r

(
1− e−

r
GA

)
if A < Gτ∗.
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In the stopping region, V0(A, t) satisfies ∂V0
∂A = 1− k.

The solution takes the form: V0(A, t) = (1−k)A+C(t), where C(t)

is some arbitrary function.

The solution in the stopping region is given by

V0(A, t) = (1− k)A +
G

r
(1− e−rτ∗)− (1− k)Gτ∗, A ≥ Gτ∗.

Combining the results, the solution is found to be

V0(A, t) = (1− k)max(A−Gτ∗,0) +
G

r

[
1− e−rmin(τ∗,AG)

]
.
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The continuation region lies in the region (shaded part)

{(t, A) : A ≤ −G

r
ln(1− k) and A−G(T − t) ≤ 0},

with V0(A, t) =
G

r
(1− e−

r
GA).
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Optimal withdrawal policies when the investment account be-

comes zero

• The policyholder strikes the balance between the penalty charge

and the time value of the cash flows.

To minimize the penalty charge, the policyholder either withdraws

at the rate G or infinite rate (instantaneous withdrawal of finite

amount).

• When A(t) is above certain threshold level (time-dependent),

the optimal strategy is to withdraw a certain part of A(t) in-

stantaneously, followed by withdrawing the remaining balance

at the rate G.
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Suppose cash flows are received at the rate G from the current time

t to some future time T0, where T0 ≤ T , then the corresponding

present value is given by
∫ T0

t
e−r(u−t)G du =

G

r

[
1− e−r(T0−t)

]
.

However, suppose the lump sum G(T0−t) is received instantaneously

at time t, the net amount received is (1− k)G(T0 − t).

Difference D(T0) =
G

r
[1− e−r(T0−t)]− (1− k)G(T0− t), t < T0 ≤ T .

The maximum is achieved at

T ∗0 = t + min

(
−ln(1− k)

r
, T − t

)
.
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T0

D(T0)

T

(i) T ∗0 = t− ln(1−k)
r (ii) T ∗0 = T
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(i) T ∗0 < T

A(t) ≤ G(T − T ∗0) – withdraws at the constant rate G throughout

the remaining life; actually A(t) becomes zero

by time T ∗0.

A(t) > G(T − T ∗0) – withdraws the finite amount A(t)−G(T −T ∗0)

instantaneously, then followed by withdraw-

ing at the rate G until time T ∗0 (at that time

A(t) becomes zero).

(ii) T ∗0 = T

A(t) ≤ G(T − t) – withdraws at the constant rate G throughout

the remaining life;

A(t) > G(T − t) – withdraws the finite amount A(t) − G(T − t)

instantaneously, then followed by withdraw-

ing at the rate G throughout the remaining

life.
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Construction of the finite difference scheme

• The numerical solution of the singular stochastic control formu-

lation poses a difficult computational problem.

• Instead of solving the singular stochastic control model directly,

we solve for the penalty approximation model in which the al-

lowable control is bounded.

• Since the governing equation is a degenerate diffusion equation

with only the first order derivative of A appearing, upwind dis-

cretization must be used to deal with the first order derivative

terms in the differential equation.
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Two-level implicit schemes

V
n+1
j,k − V

n
j,k

4τ
= θLhV

n+1
j,k + (1− θ)LhV

n
j,k

+min
(
max

(
1− V

n+1
j,k − V

n+1
j−1,k

4W
− V

n+1
j,k − V

n+1
j,k−1

4A
,0

)
, k

)
G

+ λ max
(
1− k − V

n+1
j,k − V

n+1
j−1,k

4W
− V

n+1
j,k − V

n+1
j,k−1

4A
,0

)
,

where θ is a weighting factor, 0 < θ ≤ 1. When θ = 1, we have

the fully implicit scheme; while θ = 1
2 corresponds to the Crank-

Nicholson scheme.

• Due to the presence of the mildly non-linear penalty term in the

differential equation, a non-linear algebraic system of equations

has to be solved at each time step. Newton type iterations are

applied to solve the non-linear algebraic equations.
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Discrete withdrawal model

• Discrete withdrawal amount is only allowed at time ti, i = 1,2, · · · , N .

• Let the discrete withdrawal amount at time ti be denoted by γi.

• Since the account balance of the withdrawal guarantee At re-

mains unchanged within the interval (ti−1, ti), i = 1,2, · · · , N , the

annuity value function V (W, A, t) satisfies the following differen-

tial equation which has no dependence on A:

∂V

∂t
+ LV = 0, t ∈ (ti−1, ti), i = 1,2, · · · , N.

The updating of At only occurs at the withdrawal dates.
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Jump condition across a withdrawal date

• Upon withdrawing an amount γi at ti, the annuity account drops

from Wt to max(Wt − γi,0), while the guarantee balance drops

from At to At − γi.

• The jump condition of V (W, A, t) across ti is given by

V (W, A, t−i ) = max
0≤γi≤A

{V (max(W − γi,0), A− γi, t
+
i ) + f̂(γi)}.

Here, f̂(γi) represents the actual cash amount received by the

policyholder subject to a penalty charge under excessive with-

drawal.
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Discretely monitored path dependent option formulation

The auxiliary conditions for V (W, A, t) remain the same except that

the boundary value function V0(A, t) under discrete withdrawal is

governed by

∂V0

∂t
− rV = 0, t 6= ti, i = 1,2, · · · , N,

V0(A, t−) = max
0≤γi≤A

{V0(A− γi, t
+) + f̂(γi)}, t = ti, i = 1,2, · · · , N,

V0(A, T ) = f̂(A) and V0(0, t) = 0.

Here, A serves the role as the path dependent variable, which is

updated whenever the calendar time sweeps across a fixing date.
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Nt NW NA annuity value change in value ratio of change
32 64 64 96.241
64 128 128 94.720 -1.521

128 256 256 93.788 -0.932 1.6
256 512 512 93.506 -0.282 3.3
512 1024 1024 93.419 -0.087 3.3

Examination of the rate of convergence of the Crank-Nicholson

scheme for solving the penalty approximation model.
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penalty k = 1% k = 10%
parameter λ annuity value annuity value
101 89.515 87.187
102 99.924 92.720
103 101.884 93.327
104 101.028 93.410
105 101.043 93.418
106 101.045 93.419
107 101.045 93.419
108 101.045 93.419

Test of convergence of the numerical approximation solution to the

annuity value with varying values of the penalty parameter λ and

penalty charge k.
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Fair insurance fee

k = 5% k = 10%
contractual rate, g maturity, T = 1/g σ = 20% σ = 30% σ = 20% σ = 30%

4% 25.00 103 bp 213 bp 56 bp 133 bp
5% 20.00 125 bp 260 bp 69 bp 162 bp
6% 16.67 145 bp 305 bp 83 bp 192 bp
7% 14.29 165 bp 348 bp 97 bp 221 bp
8% 12.50 185 bp 390 bp 111 bp 251 bp
9% 11.11 202 bp 429 bp 124 bp 277 bp
10% 10.00 219 bp 466 bp 137 bp 304 bp
15% 6.67 296 bp 639 bp 198 bp 434 bp

Impact of the GMWB contractual rate g, penalty charge k and equity

volatility σ of the account on the required insurance fee α (in basis

points).
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The value of the GMWB guarantee as a function of W at t = 0,

A = 100, with respect to various values of the insurance fee α

including the fair value α = 0.03126. The fair value of the fee

occurs when the value of the guarantee V satisfies V = w0 = 100.
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• When W is relatively small, α has no effect on the contract value

since the guarantee component of the contract dominates the

equity component (A À W ). In this case, the contract value is

independent of the insurance fee which is imposed on the equity

component.

• As the fee increases, the no-arbitrage value of the contract de-

creases near W = 100.

• The value of the contract is precisely V = 100 at W = 100 when

the fair fee is charged.
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Why γ = 0 is ruled out?

• Non-withdrawal amount is subject to a proportional insurance

fee α.

• Under the risk neutral valuation framework, the drift rate of Wt

is r − α, which is less than r.

• Withdrawal is more preferable since the withdrawal amount will

have a higher return at the rate r as priced under the risk neutral

valuation.

V (W + δ, A + δ, t) ≤ V (W, A, t) + δ, δ > 0,

thus giving

∂V

∂W
+

∂V

∂A
= lim

δ→0

V (W + δ, A + δ, t)− V (W, A, t)

δ
≤ 1.
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With the positivity of 1− ∂V

∂W
− ∂V

∂A
, the linear complementarity for-

mulation reduces to

min
(
−∂V

∂t
− LV −

(
1− ∂V

∂W
− ∂V

∂V

)
G,

∂V

∂W
+

∂V

∂A
− (1− k)

)
= 0,

thus withdrawal always occurs under the optimal dynamic with-

drawal policy.

• When (Wt, At) lies within “γ = ∞” region, the holder should

withdraw instantaneously a finite amount until (Wt, At) falls to

a point on the separating boundary.
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Plot of the optimal withdrawal boundary in the (W, A)-plane, sepa-

rating the “γ = ∞” region at the top from the “γ = G” region at

the bottom. The boundary intersects the A-axis at A = −G
r ln(1−k).

53



Conclusions

• Following the Hamilton-Jacobi-Bellman approach that is com-

monly used in stochastic control problems, a singular stochastic

control model is constructed for pricing variable annuities with

guaranteed minimum withdrawal benefit. Here, the withdrawal

rate is considered as a control variable.

• We apply the penalty approach where an upper bound is placed

on the withdrawal rate. We then take the bound to tend to

infinity subsequently. This penalty approach leads to an effec-

tive numerical approximation methods using the finite difference

scheme.

• We have also constructed the numerical scheme for solving the

discrete model. The apparent agreement of the numerical re-

sults from both versions serves to check for consistency of the

two pricing approaches.
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Insurance fee

• The insurance fee increases with increasing equity volatility level

and contractual withdrawal rate but decreases with a higher

penalty charge.

• The insurer should charge a substantially high insurance fee

when the poliyholder has the flexibility of dynamic withdrawal.
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Optimal withdrawal policies

• When there is a penalty on withdrawal above the contractual

rate, the policyholder either withdraws a finite amount (infinite

withdrawal rate) or withdraws at the contractual rate.

• When it is optimal for the policyholder to choose “withdrawal in

a finite amount”, he chooses to withdraw an appropriate finite

amount instantaneously. This is to make the equity value of the

investmnet account and guarantee balance to fall to the level

that it becomes optimal for him to withdraw at the contractual

rate.
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