
Advanced Numerical Methods

Solution to Homework One

Course instructor: Prof. Y.K. Kwok

1. When the asset pays continuous dividend yield at the rate q, the expected rate of return
of the asset is r− q under the risk neutral measure (see Chap 3 of Kwok’s text for justifi-
cation). Under the continuous Geometric Brownian process model, the logarithm of the

asset price ratio over ∆t interval is normally distributed with mean

(
r − q − σ2

2

)
∆t and

variance σ2∆t. Accordingly, the mean and variance of
St+∆t

St

are e(r−q)∆t and e2(r−q)∆t(eσ2∆t−
1). By equating the mean and variance of the discrete binomial model and the continuous
Geometric Brownian process model, we obtain

pu + (1− p)d = e(r−q)∆t

pu2 + +(1− p)d2 = e2(r−1)∆teσ2∆t.

Also, we use the usual tree-symmetry condition: u = 1/d. Solving the equations, we
obtain

u =
1

d
=

σ̃2 + 1 +
√

(σ̃2 + 1)2 − 4R2

2R
, p =

R− d

u− d
,

where R = e(r−q)∆t and σ̃2 = R2eσ2∆t. As an analytic approximation to u and d up to
order ∆t accuracy, we take

u = eσ
√

∆t and d = e−σ
√

∆t.

The only change occurs in the binomial parameter p, where

p =
e(r−q)∆t − d

u− d
,

while u and d remain the same. The binomial pricing formula takes a similar form
(discounted expectation of the terminal payoff):

V = [pV ∆t + (1− p)V ∆t]e−r∆t.

The discount factor e−r∆t remains the same while the risk neutral probability of up move
p is modified.

2. (a) With the usual notation

p =
R− d

u− d
and 1− p =

u−R

u− d
.

If R < d or R > u, then one of the two probabilities is negative. This happens when

e(r−q)∆t < e−σ
√

∆t

or
e(r−q)∆t > eσ

√
∆t.

This in turn happens when (q − r)
√

∆t > σ or (r − q)
√

∆t > σ. Hence negative
probabilities occur when

σ < |(r − q)
√

∆t|.
This result places a restriction on the time step. More precisely, the time step cannot
be chosen to be larger than σ2/(r−q)2. If σ happens to be small, then the restriction
can be quite severe.
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(b) We approximate ln
St+∆t

St

by ζa, where

ζa =

{
v1 with probability 0.5
v2 same probability

.

Matching the mean and variance, we obtain

E[ζa] =
v1 + v2

2
=

(
r − q − σ2

2

)
∆t

var(ζ2) =
v2

1 + v2
2

2
= σ2∆t [after dropping O((∆t)2) term].

Solving the equation [up to O(∆t) accuracy], we obtain

v1 =

(
r − q − σ2

2

)
∆t + σ

√
∆t and v2 =

(
r − q − σ2

2

)
∆t− σ

√
∆t.

Recall that

v1 = ln u so that u = e

(
r−q−σ2

2

)
∆t+σ

√
∆t

and

v2 = ln d so that d = e

(
r−q−σ2

2

)
∆t−σ

√
∆t

As a check, we consider

v2
1 + v2

2 = 2

[(
r − q − σ2

2

)
∆t

]2

+ 2σ2∆t

so that
v2

1 + v2
2

2
= σ2∆t + O((∆t)2).

Remark : In the usual set of binomial parameters, we take v1 = −v2 = σ
√

∆t. The drift

rate in the dynamics of ln
St+∆t

St

is reflected in taking different probability

values for the up jump and down jump. Here, we set p = 0.5, the drift rate is

reflected in adding the drift movement

(
r − q − σ2

2

)
∆t over the time interval

∆t.

3. In this case, F0 = 198, X = 200, r = 0.08, σ = 0.3, T = 0.75, and ∆t = 0.25. Also

u = e0.3
√

0.25 = 1.1618

d =
1

u
= 0.8607

R = 1

p =
R− d

u− d
= 0.4626

1− p = 0.5373.

The output is shown in the Figure below. The calculated price of the option is 20.34
cents.

Growth factor per step, R = 1.0000
Probability of up move, p = 0.4626
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Up step size, u = 1.1618
Down step size, d = 0.8607

The bold numbers represent the payoff from early exercise of the American futures option.

4. A binomial tree cannot be applied in a straightforward manner. This is an example of
what is known as a history-dependent option. The payoff depends on the path followed by
the stock price as well as its final value. The option cannot be simply valued by starting
at the end of the tree and working backward since the payoff at the final branches is not
known unambiguously. An efficient approach is the Forward Shooting Grid technique.

5. Suppose a dividend equal to D is paid during a certain time interval. If S is the stock
price at the beginning of the time interval, it will be either Su−D or Sd−D at the end
of the time interval. At the end of the next interval, it will be one of (Su −D)u, (Su −
D)d, (Sd−D)u and (Sd−D)d. Since (Su−D)d does not equal (Sd−D)u, the tree does
not recombine. If S is equal to the stock price less the present value of future dividends,
this problem is avoided.

6. In this case S0 = 1.6, r = 0.05, rf = 0.08, σ = 0.15, T = 1.5, ∆t = 0.5. This means that

u = e0.15
√

0.5 = 1.1119

d =
1

u
= 0.8994

R = e(0.05−0.08)×0.5 = 0.9851

p =
R− d

u− d
= 0.4033

1− p = 0.5967.

The option pays off
ST − Smin.

The tree is shown in the Figure below. At each node, the upper number is the exchange
rate, the middle number(s) are the minimum exchange rate(s) so far, and the lower
number(s) are the value(s) of the option. The value of the option today is found to be
0.1307.
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7. In this case, S0 = 40, X = 40, r = 0.01, σ = 0.35, T = 0.25, ∆t = 0.08333. This mean
that

u = e0.35
√

0.08333 = 1.1063

d =
1

u
= 0.9039

R = e0.1×0.08333 = 1.008368

p =
R− d

u− d
= 0.5161

1− p = 0.4839.

The option pays off
40− S.

where S denotes the geometric average. The tree is shown in the Figure. At each node,
the upper number is the stock price, the middle number(s) are the geometric average(s),
and the lower number(s) are the value(s) of the option. The geometric averages are
calculated using the first, the last and all intermediate stock prices on the path. The tree
shows that the value of the option today is $1.40.

Remark : In general, the number of possible geometric average values at the nodes that
are n time steps from the tip of the binomial tree can be Cn

1 , Cn
2 , · · · , Cn

n where
Cn

k is the binomial coefficient (number of ways of choosing k objects from n
objects). For example, how many paths that lead to the second upper node
at maturity? Out of the 3 time steps, we choose one step to move down and
the other two to move up. The number of paths is C3

1 . For a n-step binomial
tree, the total number of possible averaging values is 2n.
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8. Suppose that there are two horizontal barriers, H1 and H2, with H1 > H2 and that the
underlying stock price follows geometric Brownian motion. In a trinomial tree, there are
three possible movements in the asset’s price at each node: up by a proportional amount
u; stay the same; and down by a proportional amount d where d = 1/u. We can always
choose u so that the nodes lie on both barriers. The condition that must be satisfied by
u is

H2 = H1u
N

or
ln H2 = ln H1 + N ln u

for some integer N .

Tree with nodes lying on each of two barriers is shown in the Figure. It may occur that
the initial asset price may not lie on any one of these horizontal rows. In this case, it may
be necessary to adjust the branching in the first time step (see the Figure).

9. Applying the distributive rule, we have

max(min(Pcont, K), X − Sn
j )

= min(max(Pcont, X − Sn
j ), max(K, X − Sn

j )),

which gives the same dynamic programming procedure derived from the perspective of
the issuer.

Financial interpretation

The issuer’s calling right enforces a non-called American put to have value below K.
When Pcont is above K, the American put is called. The holder can take the maximum
of K (receiving the cash K) or the exercise payoff X − Sn

j . When Pcont is below K, the
holder can still choose the maximum of X − Sn

j and Pcont as in a non-callable American
put option.

10. Unlike the derivation in the lecture note, we now keep all the terms that are O((∆t)2).
From the second equation, we obtain

v2 =

(
r − σ2

2

)
∆t2 + σ2∆t.

Once v is obtained, by substituting into the first equation, we obtain

p =
1

2


1 +

(
r − σ2

2

)
∆t

√
σ2∆t +

(
r − σ2

2

)2
∆t2


 .
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11. Consider the system of equations for p1, p2 and p3:



1 1 1
u 1 d
u2 1 d2







p1

p2

p3


 =




1
R
W


 .

Eliminating p2 from the equations, we obtain

(u− 1)p1 + (d− 1)p3 = R− 1

(u2 − 1)p1 + (d2 − 1)p3 = W − 1.

Solving for p1 and p3 gives

p1 =
(W −R)u− (R− 1)

(u− 1)(u2 − 1)
and p3 =

(W −R)u2 − (R− 1)u3

(u− 1)(u2 − 1)
.

When λ = 1, the parameter u agrees with that of the Cox-Rubinstein-Ross binomial
scheme. We expect to have

p1 + p3 = 1 + O(∆t),

or equivalently,
p2 = O(∆t).

12. The largest and the smallest asset price at the extreme nodes at expiry are S0e
nu and

S0e
−nu, respectively. With respect to ln S, the width of the interval between the largest

value of ln S and the smallest value of ln S is given by (ln S0 + n ln u)− (ln S0− n ln u) =
2n ln u = 2nσ

√
∆t. Let n denote the total number of time steps in the trinomial tree.

Since n∆t = T = life of the option, which is a finite quantity, the width of the interval
= 2

√
nσ
√

T ∼ √
n.

13. By equating the corresponding mean, variances and covariances (up to O(∆τ) accuracy),
we have

E[ζa
1 ] = v1(p1 + p2 + p3 + p4 − p5 − p6 − p7 − p8) =

(
r − σ2

1

2

)
∆t (i)

E[ζa
2 ] = v2(p1 + p2 − p3 − p4 + p5 + p6 − p7 − p8) =

(
r − σ2

2

2

)
∆t (ii)

E[ζa
3 ] = v3(p1 − p2 + p3 − p4 + p5 − p6 + p7 − p8) =

(
r − σ2

3

2

)
∆t (iii)

var(ζa
1 ) = v2

1(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = σ2
1∆t (iv)

var(ζa
2 ) = v2

2(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = σ2
2∆t (v)

var(ζa
3 ) = v2

3(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = σ2
3∆t (vi)

E[ζa
1 ζa

2 ] = v1
2(p1 + p2 − p3 − p4 − p5 − p6 + p7 + p8) = σ1σ2ρ12∆t (vii)

E[ζa
1 ζa

3 ] = v1
3(p1 − p2 − p3 − p4 − p5 − p6 + p7 + p8) = σ1σ3ρ13∆t (viii)

E[ζa
2 ζa

3 ] = v2
3(p1 − p2 − p3 + p4 + p5 − p6 − p7 + p8) = σ2σ3ρ23∆t (ix)

Lastly, the sum of probabilities must be one so that

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 = 1. (x)

Recall that v1 = λ1σ
√

∆t, v2 = λ2σ
√

∆t and v3 = λ3σ
√

∆t. In order that Eqs (iv), (v)
and (vi) are consistent, we must set λ1 = λ2 = λ3. Set the common value to be λ. These
3 equations then reduce to single equation:

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 =
1

λ2
.
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There are 8 equations for the 9 unknowns. The solution to the probabilities values is
obtained as:

p1 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

σ1

+
r − σ2

2

2

σ2

+
r − σ2

3

2

σ3

)

+
ρ12 + ρ13 + ρ23

λ2

]
,

p2 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

2
+

r − σ2
2

2

2
− r − σ2

3

2

2

)

+
ρ12 − ρ13 − ρ23

λ2

]
,

p3 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

σ1

− r − σ2
2

2

σ2

+
r − σ2

3

2

2

)

+
ρ13 − ρ12 − ρ23

λ2

]
,

p4 =
1

8

[
1

λ2
+

√
∆t

λ

(
r − σ2

1

2

2
− r − σ2

2

2

2
− r − σ2

3

2

2

)

+
ρ23 − ρ13 − ρ12

λ2

]
, etc.

14. If m is set equal to m̂, then the window Parisian feature reduces to the consecutive
Parisian feature.

• We define a binary string A = a1, a2, · · · , aNw of size Nw to represent the history of
the asset price path falling inside or outside the knock-out region at the previous Nw

consecutive monitoring instants prior to the current time. By notation, the value of
ap is et to be 1 if the asset price falls on or below the down barrier B at the p-th
monitoring instant counting backward from the current time, and is set to be 0 if
otherwise.

• There are altogether 2Nw different strings to represent all possible breaching history
of asset price paths at the previous Nw monitoring instants. The number of states
that have to be recorded is CN2

0 +CNw
1 + · · ·+CNw

N−1, where CNw
i denotes the combina-

tion of Nw denotes the combination of Nw strings taken i at a time. This is because
the window Parisian option value becomes zero when the number of breaches reaches
N , so those states with N or more “1” in the string are irrelevant.

• Let Vwin[m, j; A] denote the value of a window Parisian option at the (m, j)-th node,
and with the asset price path history represented by the binary string A. The binary
string A has to be modified according to the event of either breaching or no breaching
at a monitoring instant.

• The corresponding numerical scheme can be succinctly represented by

Vwin[m− 1, j; A] =





{puWwin[m, j + 1; A]

+ p0Vmin[m, j; A]

+ pdVwin[m, j − 1; A]}e−r∆t if m∆t 6= t∗`
{puVwin[m, j + 1; ; gwin(A, j + 1)]

+ p0Vwin[m, j; gwin(A, j)]

+ pdVwin[m, j − 1; gwin(A, j − 1)]}e−r∆t if m∆t = t∗`
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where {
1a1a2···aNw−1

if xj ≤ ln B

0a1a2···aNw−1
if xj > ln B

.

As in the numerical procedure for the consecutive Parisian option, it is necessary
to compute Vwin[m, j; A] for those states of A with N − 1 or less “1” in the string
before we move to a time level corresponding to a monitoring instant. Note that
Vwin[m, j; A] = 0 at a monitoring instant when the string A has N or more “1”. Due
to the higher level of path-dependence exhibited by the window feature, the operation
counts of the window Parisian option calculations are about CNw

0 +CNw
1 + · · ·+CNw

N−1

times of those of plain vanilla option calculations.

15. The payoff of a floating strike lookback call is

max
τ∈[0,T ]

Sτ − ST ,

where max
τ∈[0,T ]

Sτ denotes the realized maximum of the asset price over [0, T ]. The corre-

sponding grid function at the (n, j)th node with asset price Sn
j = Sujdn−j is given by

glookback(k, j) = max(k, j),

where k is the numbering index for the lookback state variable. The FSG algorithm is

V n−1
j,k =

[
puV

n
j+1,glookback(k,j+1) + p0V

n
j,glookback(k,j)

+ pdV
n
j−1,glookback(k,j−1)

]
e−r∆t.

To incorporate the American early exercise feature, we simply add the dynamic procedure
at each node and for each number index:

V n−1
j,k = max

(
[puV

n
j+1,glookback(k,j+1) + p0V

n
j,glookback(k,j)

+ pdV
n
j−1,glookback(k,j−1)]e

−r∆t, Sukdn−k − Sujdn−j
)
.

16. The strike reset feature dictates the updated strike price at a prespecified reset date t` to
be given by

X` = max(X`−1, S(t`)), ` = 1, 2, · · · ,m, (A)

where X0 is the original strike price and S(t`) is the asset price at t`.

• If we apply the backward induction procedure in a trinomial calculation for pricing
the reset option, we encounter the difficulty in evaluating the terminal payoff since
the strike price is not yet known. The difficulty arises because the strike price
adopted in the payoff depends on realization of the asset price on the trinomial tree.

• Let m` denote the number of time steps counting from the top node of the trinomial
tree to the `-th reset dates is 2m` + 2, ` = 0, 1, · · · ,M . Here, the 0-th reset date
and the (M + 1)-th reset date are taken to be the inception time and the expiration
date, respectively. We have (2m` + 2) possible strike prices, since there are (2m` + 1
possible asset values at the time level that is m` time steps from the top node of the
trinomial tree, and the one additional possible strike price is the original strike price
X set at initiation of the option contract.

• When we follow the backward induction procedure in the reset option calculation,
we first compute the terminal payoff values for all possible strike prices (2mM + 2 of
them). Now, the augmented state vector at each lattice node in the FSG algorithm
includes all possible strike prices. As we proceed backwards, in particular at a
time level corresponding to a reset date, the vector of strike prices will be adjusted
according to the rule stated in Equation (A).
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• Let k denote the index relating to the logarithm of the strike price xk (recall that
xk = ln S + k∆x, where S is the asset value at the top of the trinomial tree), and
write Vres[m, j; k] as the numerical value of the reset option at the (m, j)-th node
with (log) strike price xk. Let the original strike price X be related to the index
value k0 by xk0 = ln X = ln S + k0∆x.

• The construction of the FSG algorithm for pricing the reset call option gives

Vres[m− 1, j; k] =





{puVres[m, j + 1; k]

+ p0Vres[m, j; k]

+ pdVres[m, j − 1; k]}e−r∆t if m∆t 6= t̂`

{puVres[m, j + 1; gres(k, j + 1)]

+ p0Vres[m, j; gres(k, j)]

+ pdVres[m, j − 1; gres(k, j − 1)]}e−r∆t if m∆t = t̂`

,

where the grid function is given by

gres(k, j) = min(k, j, k0).

At maturity (say, MT time steps from the current time on the trinomial tree), the
terminal payoff is given by

Vres[MT , j; k] = max(exj − exk , 0)

for −MT ≤ j ≤ MT and −mM ≤ k ≤ mM .
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