Solutions to Final Exam of Math 3121

Problem 1.(15 points) Determine if the following maps are homomorphisms of groups (no reasons needed).
(1). $\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad \Phi(a)=a^{8}$
(2). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=8 a$
(3). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=a^{8}$
(4). $\Phi: G L(n, \mathbb{R}) \rightarrow \mathbb{R}, \quad \Phi(A)=\log |\operatorname{Det}(A)|$.
(5). $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(z)=|z|$.
Answer: (1) No.
(2) No.
(3) Yes.
(4) Yes.
(5) Yes.

Problem 2.(15 points) Determine if each of the following maps is a ring homomorphism (no reasons needed).
(1). $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ given by $\Phi(x)=-x$.
(2). $\Phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $\Phi((a, b))=b$.
(3). $\Phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\Phi(a+b i)=a-b i$.
(4). $\Phi: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$ given by $\phi(a)=1$ for a odd, and $\phi(a)=0$ for a even.
(5). $\Phi: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$,

$$
\Phi(A)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) A\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)
$$

Answer: (1) No.
(2) Yes.
(3) Yes.
(4) Yes.
(5) Yes.

To prove Φ in (5) is a ring homomorphism, we note that $\Phi(A)=C A C^{-1}$, where $C=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. $\Phi(A+B)=C(A+B) C^{-1}=C A C^{-1}+C B C^{-1}=$ $\Phi(A)+\Phi(B)$, and $\Phi(A B)=C A B C^{-1}=\left(C A C^{-1}\right)\left(C B C^{-1}\right)=\Phi(A) \Phi(B)$.

Problem 3. (20 points). Multiple choice (each problem has only one correct answer, no reasons needed).
(1). Which of the following is a field?
(a). \mathbb{Z}_{30}.
(b). \mathbb{Z}.
(c) \mathbb{Z}_{19}.
(d). None of above
Answer: (c)
(2). Which of the following rings is an integral domain?
(a). $\mathbb{Z} \times \mathbb{Z}$.
(b). \mathbb{Z}_{2018}.
(c) \mathbb{Z}.
(d). None of above
Answer: (c)
(3). What is the remainder of 9^{62} when divided by $26 ?$
(a) 3 ,
(b). 9 ,
(c). 17
(d). None of above
Answer: (a)
(4). Which of the following is not a subgroup of the permutation group S_{5} ?
(a). The set of all $\sigma \in S_{5}$ such that $\sigma(5)=5$.
(b). The set of all $\sigma \in S_{5}$ such that $\sigma(1)=1$.
(c). The set of all $\sigma \in S_{5}$ such that $\sigma^{120}=e$.
(d). The set of all $\sigma \in S_{5}$ such that $\sigma^{2}=e$.

Answer: (d). Because the set is not closed. The transpositions (1, 2) and $(1,3)$ both satisfy $\sigma^{2}=e$, but $(1,2)(1,3)$ does not.

Problem 4 (10 points). Find a group homomorphism $\Phi: S_{3} \rightarrow S_{4}$ that is injective (just write down your map, no reasons needed).

$$
\text { Answer: For } \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
a & b & c
\end{array}\right) \in S_{3}, \Phi(\sigma)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
a & b & c & 4
\end{array}\right)
$$

Problem 5 (10 points). Let F be a finite field with q elements. Prove that $a^{q}=a$ for all $a \in F$.

Answer: Let $F^{*}=F-\{0\}$. Because F is a field, F^{*} is a group under multiplication. $\left|F^{*}\right|=q-1$. So for every $a \in F^{*}, a^{q-1}=1$. This implies $a^{q}=a$. For $a=0$, it is clear that $a^{q}=a$. This proves $a^{q}=a$ for all $a \in F$.

Problem 6 (15 points). Let G be an abelian group, n be a positive integer. (1). Prove that $f: G \rightarrow G$ given by $f(a)=a^{n}$ is a group homomorphism.
(2). Assume G is finite and $|G|$ is relatively prime to n, prove that f is an isomorphism.

Answer: (1). $f(a b)=(a b)^{n}$. Because G is abelian, $(a b)^{n}=a^{n} b^{n}=$ $f(a) f(b)$. This proves $f(a b)=f(a) f(b)$, so f a group homomorphism.
(2). It is enough to prove $\operatorname{Ker}(f)=\{e\}$. If $a \in \operatorname{Ker}(f)$, then $a^{n}=e$. We also have $a^{|G|}=e$. Since n and $|G|$ are relatively prime, there are $s, t \in \mathbb{Z}$ such that $s n+t|G|=1$. $a=a^{1}=a^{s n+t|G|}=\left(a^{n}\right)^{s}\left(a^{|G|}\right)^{t}=e$. This prove $\operatorname{Ker}(f)=\{e\}$. So f is 1-1. Because G is finite, so f is also onto. This proves f is an isomorphism.

Problem 7 (15 points). Let R be a ring with unity 1 , $a \in R$ satisfies $a^{7}=0$.
(1). Prove that $H=\left\{1+a^{2} x a^{5} \mid x \in R\right\}$ is a group under multiplication.
(2). Assume R is finite, prove that $|H|$ is a divisor of $|R|$.

Answer: (1). For $1+a^{2} x a^{5} \in H, 1+a^{2} y a^{5} \in H$,
$\left(1+a^{2} x a^{5}\right)\left(1+a^{2} y a^{5}\right)=1+a^{2} x a^{5}+a^{2} y a^{5}+a^{2} x a^{5} a^{2} y a^{5}=1+a^{2}(x+y) a^{5} \in H$
This proves H is closed under the multiplication. $1=1+a^{2} 0 a^{5} \in H$, so H contains the identity 1 . For every $1+a^{2} x a^{5} \in H$, then $1+a^{2}(-x) a^{5} \in H$, we have $\left(1+a^{2} x a^{5}\right)\left(1+a^{2}(-x) a^{5}\right)=1+a^{2}(x+(-x)) a^{5}=1$. So every element in H has an inverse in H. This proves H is group under the multiplication.
(2). Consider $A=\left\{a^{2} x a^{5} \mid x \in G\right\}$. One checks directly that A is a group under + . So A is a subgroup of the additive group R. By Lagrange Theorem, $|A|$ is a divisor of R. It remains to prove $|A|=|H|$. Let $T: A \rightarrow H$ be the map given by $T(u)=1+u$. It is clear that T is a bijection, so $|A|=|H|$.

Second method for (2). Consider the map $f: R \rightarrow H$ given by $f(x)=$ $1+a^{2} x a^{5}$. We note that $f(x+y)=f(x) f(y)$. So f is a group homomorphism. It is clear that f is onto, i.e., $f(R)=H$. By Homomorphism theorem, $R / \operatorname{Ker}(f)$ is isomorphic to $f(R)=H$. so $|R / \operatorname{Ker}(f)|=|H|$, so $|R| /|\operatorname{Ker}(f)|=|H|$. This proves $|H|$ is a divisor of $|R|$.

