Solutions to Final Exam of Math 3121

Problem 1.(15 points) Determine if the following maps are homomorphisms of groups (no reasons needed).

(1). $\Phi : \mathbb{R} \to \mathbb{R}, \quad \Phi(a) = a^{8}$ (2). $\Phi : \mathbb{R}^{*} \to \mathbb{R}^{*}, \quad \Phi(a) = 8a$ (3). $\Phi : \mathbb{R}^{*} \to \mathbb{R}^{*}, \quad \Phi(a) = a^{8}$ (4). $\Phi : GL(n, \mathbb{R}) \to \mathbb{R}, \quad \Phi(A) = \log |Det(A)|.$ (5). $\Phi : \mathbb{C}^{*} \to \mathbb{R}^{*}, \quad \Phi(z) = |z|.$

Answer: (1) No. (2) No. (3) Yes. (4) Yes. (5) Yes.

Problem 2.(15 points) Determine if each of the following maps is a ring homomorphism (no reasons needed).

Φ: ℝ → ℝ given by Φ(x) = -x.
Φ: ℝ × ℝ → ℝ given by Φ((a, b)) = b.
Φ: ℂ → ℂ given by Φ(a + bi) = a - bi.
Φ: ℤ → ℤ₂ given by φ(a) = 1 for a odd, and φ(a) = 0 for a even.
Φ: M₂(ℝ) → M₂(ℝ),

$$\Phi(A) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}.$$

Answer: (1) No. (2) Yes. (3) Yes. (4) Yes. (5) Yes.

To prove Φ in (5) is a ring homomorphism, we note that $\Phi(A) = CAC^{-1}$, where $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. $\Phi(A+B) = C(A+B)C^{-1} = CAC^{-1} + CBC^{-1} = \Phi(A) + \Phi(B)$, and $\Phi(AB) = CABC^{-1} = (CAC^{-1})(CBC^{-1}) = \Phi(A)\Phi(B)$.

Problem 3. (20 points). Multiple choice (each problem has only one correct answer, no reasons needed).

- (1). Which of the following is a field?
- (a). \mathbb{Z}_{30} . (b). \mathbb{Z} . (c) \mathbb{Z}_{19} . (d). None of above Answer: (c)
- (2). Which of the following rings is an integral domain?
- (a). $\mathbb{Z} \times \mathbb{Z}$. (b). \mathbb{Z}_{2018} . (c) \mathbb{Z} . (d). None of above **Answer:** (c)
- (3). What is the remainder of 9^{62} when divided by 26?

(a) 3, (b). 9, (c). 17 (d). None of above **Answer:** (a)

(4). Which of the following is **not** a subgroup of the permutation group S_5 ?

- (a). The set of all $\sigma \in S_5$ such that $\sigma(5) = 5$.
- (b). The set of all $\sigma \in S_5$ such that $\sigma(1) = 1$.
- (c). The set of all $\sigma \in S_5$ such that $\sigma^{120} = e$.
- (d). The set of all $\sigma \in S_5$ such that $\sigma^2 = e$.

Answer: (d). Because the set is not closed. The transpositions (1,2) and (1,3) both satisfy $\sigma^2 = e$, but (1,2)(1,3) does not.

Problem 4 (10 points). Find a group homomorphism $\Phi: S_3 \to S_4$ that is injective (just write down your map, no reasons needed).

Answer: For
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ a & b & c \end{pmatrix} \in S_3$$
, $\Phi(\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ a & b & c & 4 \end{pmatrix}$.

Problem 5 (10 points). Let F be a finite field with q elements. Prove that $a^q = a$ for all $a \in F$.

Answer: Let $F^* = F - \{0\}$. Because F is a field, F^* is a group under multiplication. $|F^*| = q - 1$. So for every $a \in F^*$, $a^{q-1} = 1$. This implies $a^q = a$. For a = 0, it is clear that $a^q = a$. This proves $a^q = a$ for all $a \in F$.

Problem 6 (15 points). Let G be an abelian group, n be a positive integer. (1). Prove that $f: G \to G$ given by $f(a) = a^n$ is a group homomorphism. (2). Assume G is finite and |G| is relatively prime to n, prove that f is an isomorphism.

Answer: (1). $f(ab) = (ab)^n$. Because G is abelian, $(ab)^n = a^n b^n = f(a)f(b)$. This proves f(ab) = f(a)f(b), so f a group homomorphism. (2). It is enough to prove $Ker(f) = \{e\}$. If $a \in Ker(f)$, then $a^n = e$. We also have $a^{|G|} = e$. Since n and |G| are relatively prime, there are $s, t \in \mathbb{Z}$ such that sn + t|G| = 1. $a = a^1 = a^{sn+t|G|} = (a^n)^s (a^{|G|})^t = e$. This prove $Ker(f) = \{e\}$. So f is 1-1. Because G is finite, so f is also onto. This proves f is an isomorphism.

Problem 7 (15 points). Let R be a ring with unity 1, $a \in R$ satisfies $a^7 = 0$.

- (1). Prove that $H = \{1 + a^2 x a^5 \mid x \in R\}$ is a group under multiplication.
- (2). Assume R is finite, prove that |H| is a divisor of |R|.

Answer: (1). For $1+a^2xa^5\in H, 1+a^2ya^5\in H$,

$$(1+a^2xa^5)(1+a^2ya^5) = 1+a^2xa^5+a^2ya^5+a^2xa^5a^2ya^5 = 1+a^2(x+y)a^5 \in H$$

This proves H is closed under the multiplication. $1 = 1 + a^2 0a^5 \in H$, so H contains the identity 1. For every $1 + a^2 xa^5 \in H$, then $1 + a^2(-x)a^5 \in H$, we have $(1 + a^2 xa^5)(1 + a^2(-x)a^5) = 1 + a^2(x + (-x))a^5 = 1$. So every element in H has an inverse in H. This proves H is group under the multiplication.

(2). Consider $A = \{a^2xa^5 \mid x \in G\}$. One checks directly that A is a group under +. So A is a subgroup of the additive group R. By Lagrange Theorem, |A| is a divisor of R. It remains to prove |A| = |H|. Let $T : A \to H$ be the map given by T(u) = 1 + u. It is clear that T is a bijection, so |A| = |H|.

Second method for (2). Consider the map $f: R \to H$ given by $f(x) = 1 + a^2xa^5$. We note that f(x + y) = f(x)f(y). So f is a group homomorphism. It is clear that f is onto, i.e., f(R) = H. By Homomorphism theorem, R/Ker(f) is isomorphic to f(R) = H. so |R/Ker(f)| = |H|, so |R|/|Ker(f)| = |H|. This proves |H| is a divisor of |R|.