Solutions to Homework 3 and 4

Problem 1, Homework 3. Let $\sigma \in S_8$ be of the form

(1) Computer σ^2 . (2). Decompose σ as a product of disjoint cycles. (3). Compute the order of σ . (4). Compute σ^{-1} .

Answer: (1)
$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 3 & 4 & 6 & 1 & 7 & 8 \end{pmatrix}$$

(2) $\sigma = (1, 6, 5)(2, 4)(7, 8)$. (3) The order of σ is 6
(4) $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 2 & 6 & 1 & 8 & 7 \end{pmatrix}$.

Problem 2, Homework 3. Let $\sigma \in S_8$ be of the form

Suppose σ is an odd permutation,

(1). Find a and b. (2). Decompose σ as a product of disjoint cycles.

(3). Compute the order of σ . (4). Decompose σ^{-1} as a product of disjoint cycles. (5). Compute σ^{2017} .

Answer: (1). a = 4, b = 5. (2). $\sigma = (1, 8, 7)(2, 6, 5, 4).$ (3) The order of σ is 12. (4) $\sigma = (1, 7, 8)(2, 4, 5, 6).$ (5). 2017 = 12 · 168 + 1, $\sigma^{2017} = (\sigma^{12})^{168} \sigma^1 = \sigma.$

Problem 3, Homework 3. Which of the following is a coset of the subgroup H = {e, (12)} in S₃?
(1). B₁ = {(123), (132), e}.
(2). B₂ = {(123), (12)}.
(3). B₃ = {(123), (13)}.

(4). $B_4 = \{(123), (132)\}.$ (5). $B_5 = \{e, (132)\}.$

Answer: Every coset of H should have 2 elements, so B_1 is not a coset of H. (2). No. A quick way to see this is that B_2 intersects with H but no equal to H. (3). $B_3 = (13)H$ is a coset of H. (4). No. (5). No. B_5 intersects with H, but is not equal to H.

Problem 4, Homework 3. Let G be an abelian group, prove that $H = \{a \in G \mid a^3 = e\}$ is a subgroup of G.

Proof. Since $e^3 = e$, so $e \in H$. If $a, b \in H$, then $a^3 = b^3 = e$. $(ab)^3 = a^3b^3 = ee = e$, where the first "=" follows from the assumption G is abelian, so $ab \in H$. This proves H is closed. If $a \in H$, $a^3 = e$, taking inverse both sides, we get $(a^{-1})^3 = e$, so $a^{-1} \in H$. This proves H is a subgroup.

Problem 1, Homework 4. Determine if the following maps are homomorphisms of groups (No reasons needed).

(1). $\Phi : \mathbb{R} \to \mathbb{R}, \quad \Phi(a) = 2018a$ (2). $\Phi : \mathbb{R}^* \to \mathbb{R}^*, \quad \Phi(a) = 2018a$ (3). $\Phi : \mathbb{R}^* \to \mathbb{R}^*, \quad \Phi(a) = a^{2018}$ (4). $\Phi : GL(n, \mathbb{R}) \to \mathbb{R}^*, \quad \Phi(A) = Det(A)^{10}.$ (5). $\Phi : \mathbb{R} \to \mathbb{R}^*, \quad \Phi(a) = 10^a.$ (6). $\Phi : \mathbb{R}^* \to \mathbb{R}, \quad \Phi(a) = 10^a.$ (7). $\Phi : S_5 \to S_5, \quad \Phi(\sigma) = \sigma^{120}.$ **Answer:** (1) Yes. (2) No. (3) Yes. (4) Yes. (5) Yes. (6) No. (7) Yes (because $|S_5| = 5! = 120$, so $\sigma^{120} = e$ for all σ).

Problem 2, Homework 4. Find a homomorphism $\Phi : \mathbb{R}^* \to \mathbb{R}$ such that

 $\Phi(2) = 3.$

Answer: $\Phi(a) = 3 \log_2 |a|$. Other answers are possible, also any solution that contains expression $\log_2 a$ is wrong, as $\log_s a$ is NOT defined for a < 0.

Problem 3, Homework 4. Let G be a group, H_1 and H_2 be finite subgroups of G. Suppose that $|H_1|$ and $|H_2|$ are relatively prime, prove that $H_1 \cap H_2$ has only one element (hint: use the Lagrange Theorem).

Method 1. It can be proved that $H_1 \cap H_2$ is a subgroup of G, so it is also a subgroup of H_1 and H_2 . By Lagrange Theorem, $|H_1 \cap H_2|$ is a divisor of $|H_1|$ and $|H_2|$, so $|H_1 \cap H_2|$ is a common divisor of $|H_1|$ and $|H_2|$. The assumption that $|H_1|$ and $|H_2|$ are relatively prime implies that the only common divisor of $|H_1|$ and $|H_2|$ is 1. Therefore $|H_1 \cap H_2| = 1$. This means $H_1 \cap H_2 = \{e\}$.

Method 2. If $a \in H_1 \cap H_2$, then $a \in H_1$, so the order of a is a divisor of $|H_1|$. Similarly, the order of a is a divisor of $|H_2|$. So the order of a is a common divisor of $|H_1|$ and $|H_2|$. Because $|H_1|$ and $|H_2|$ are relatively prime, 1 is the only common divisor of $|H_1|$ and $|H_2|$, so the order of a is 1, so a = e. This proves $H_1 \cap H_2 = \{e\}$.

Problem 4, Homework 4. Let G, G' be finite groups. Suppose that |G| and |G'| are relatively prime. Prove that a homomorphism $\Phi : G \to G'$ must be trivial, i.e., $\Phi(a) = e'$ for all $a \in G$ (hint: Use the Lagrange Theorem).

Proof. Consider the image $\Phi(G)$, it is a subgroup of G' (See Theorem 13.12 (3)). By Lagrange Theorem, $|\Phi(G)|$ is a divisor of |G'|. By Homomorphism theorem (Theorem 14.11), $|G|/|H| = |\Phi(G)|$, where $H = Ker(\Phi)$, this implies that $|\Phi(G)|$ is a divisor of |G|. So $|\Phi(G)|$ is a common divisor of |G'| and |G|. Because |G| and |G'| are relatively prime, so $|\Phi(G)| = 1$, so $\Phi(G) = \{e'\}$. This proves $\Phi(a) = e'$ for all $a \in G$.