Solutions to Homework 3 and 4

Problem 1, Homework 3. Let $\sigma \in S_{8}$ be of the form

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 3 & 2 & 1 & 5 & 8 & 7
\end{array}\right)
$$

(1) Computer σ^{2}. (2). Decompose σ as a product of disjoint cycles. (3). Compute the order of σ. (4). Compute σ^{-1}.

Answer: (1) $\sigma^{2}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 3 & 4 & 6 & 1 & 7 & 8\end{array}\right)$
(2) $\sigma=(1,6,5)(2,4)(7,8)$. (3) The order of σ is 6 .
(4) $\sigma^{-1}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 2 & 6 & 1 & 8 & 7\end{array}\right)$.

Problem 2, Homework 3. Let $\sigma \in S_{8}$ be of the form

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 6 & 3 & 2 & a & b & 1 & 7
\end{array}\right)
$$

Suppose σ is an odd permutation,
(1). Find a and b. (2). Decompose σ as a product of disjoint cycles.
(3). Compute the order of σ. (4). Decompose σ^{-1} as a product of disjoint cycles. (5). Comupte σ^{2017}.

Answer: (1). $a=4, b=5 . \quad$ (2). $\sigma=(1,8,7)(2,6,5,4)$. (3) The order of σ is $12 . \quad(4) \sigma=(1,7,8)(2,4,5,6) . \quad(5) . \quad 2017=12 \cdot 168+1$, $\sigma^{2017}=\left(\sigma^{12}\right)^{168} \sigma^{1}=\sigma$.

Problem 3, Homework 3. Which of the following is a coset of the subgroup $H=\{e,(12)\}$ in S_{3} ?
(1). $B_{1}=\{(123),(132), e\}$.
(2). $B_{2}=\{(123),(12)\}$.
(3). $B_{3}=\{(123),(13)\}$.
(4). $B_{4}=\{(123),(132)\}$.
(5). $B_{5}=\{e,(132)\}$.

Answer: Every coset of H should have 2 elements, so B_{1} is not a coset of H. (2). No. A quick way to see this is that B_{2} intersects with H but no equal to H. (3). $B_{3}=(13) H$ is a coset of H. (4). No. (5). No. B_{5} intersects with H, but is not equal to H.

Problem 4, Homework 3. Let G be an abelian group, prove that $H=\{a \in$ $\left.G \mid a^{3}=e\right\}$ is a subgroup of G.

Proof. Since $e^{3}=e$, so $e \in H$. If $a, b \in H$, then $a^{3}=b^{3}=e .(a b)^{3}=a^{3} b^{3}=$ $e e=e$, where the first "=" follows from the assumption G is abelian, so $a b \in H$. This proves H is closed. If $a \in H, a^{3}=e$, taking inverse both sides, we get $\left(a^{-1}\right)^{3}=e$, so $a^{-1} \in H$. This proves H is a subgroup.

Problem 1, Homework 4. Determine if the following maps are homomorphisms of groups (No reasons needed).
(1). $\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad \Phi(a)=2018 a$
(2). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=2018 a$
(3). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=a^{2018}$
(4). $\Phi: G L(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}, \quad \Phi(A)=\operatorname{Det}(A)^{10}$.
(5). $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=10^{a}$.
(6). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}, \quad \Phi(a)=10^{a}$.
(7). $\Phi: S_{5} \rightarrow S_{5}, \quad \Phi(\sigma)=\sigma^{120}$.

Answer: (1) Yes. (2) No. (3) Yes. (4) Yes. (5) Yes. (6) No.
(7) Yes (because $\left|S_{5}\right|=5!=120$, so $\sigma^{120}=e$ for all σ).

Problem 2, Homework 4. Find a homomorphism $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}$ such that
$\Phi(2)=3$.
Answer: $\Phi(a)=3 \log _{2}|a|$. Other answers are possible, also any solution that contains expression $\log _{2} a$ is wrong, as $\log _{s} a$ is NOT defined for $a<0$.

Problem 3, Homework 4. Let G be a group, H_{1} and H_{2} be finite subgroups of G. Suppose that $\left|H_{1}\right|$ and $\left|H_{2}\right|$ are relatively prime, prove that $H_{1} \cap H_{2}$ has only one element (hint: use the Lagrange Theorem).

Method 1. It can be proved that $H_{1} \cap H_{2}$ is a subgroup of G, so it is also a subgroup of H_{1} and H_{2}. By Lagrange Theorem, $\left|H_{1} \cap H_{2}\right|$ is a divisor of $\left|H_{1}\right|$ and $\left|H_{2}\right|$, so $\left|H_{1} \cap H_{2}\right|$ is a common divisor of $\left|H_{1}\right|$ and $\left|H_{2}\right|$. The assumption that $\left|H_{1}\right|$ and $\left|H_{2}\right|$ are relatively prime implies that the only common divisor of $\left|H_{1}\right|$ and $\left|H_{2}\right|$ is 1 . Therefore $\left|H_{1} \cap H_{2}\right|=1$. This means $H_{1} \cap H_{2}=\{e\}$.

Method 2. If $a \in H_{1} \cap H_{2}$, then $a \in H_{1}$, so the order of a is a divisor of $\left|H_{1}\right|$. Similarly, the order of a is a divisor of $\left|H_{2}\right|$. So the order of a is a common divisor of $\left|H_{1}\right|$ and $\left|H_{2}\right|$. Because $\left|H_{1}\right|$ and $\left|H_{2}\right|$ are relatively prime, 1 is the only common divisor of $\left|H_{1}\right|$ and $\left|H_{2}\right|$, so the order of a is 1 , so $a=e$. This proves $H_{1} \cap H_{2}=\{e\}$.

Problem 4, Homework 4. Let G, G^{\prime} be finite groups. Suppose that $|G|$ and $\left|G^{\prime}\right|$ are relatively prime. Prove that a homomorphism $\Phi: G \rightarrow G^{\prime}$ must be trivial, i.e., $\Phi(a)=e^{\prime}$ for all $a \in G$ (hint: Use the Lagrange Theorem).

Proof. Consider the image $\Phi(G)$, it is a subgroup of G^{\prime} (See Theorem 13.12 (3)). By Lagrange Theorem, $|\Phi(G)|$ is a divisor of $\left|G^{\prime}\right|$. By Homomorphism theorem (Theorem 14.11), $|G| /|H|=|\Phi(G)|$, where $H=\operatorname{Ker}(\Phi)$, this implies that $|\Phi(G)|$ is a divisor of $|G|$. So $|\Phi(G)|$ is a common divisor of $\left|G^{\prime}\right|$ and $|G|$. Because $|G|$ and $\left|G^{\prime}\right|$ are relatively prime, so $|\Phi(G)|=1$, so $\Phi(G)=\left\{e^{\prime}\right\}$. This proves $\Phi(a)=e^{\prime}$ for all $a \in G$.

