Solutions to Homework 5.

Problem 1. (no reasons needed). Which of the following rings are integral domains, which of them are fields?
$\mathbb{Z}, \mathbb{Z}_{22}, \mathbb{Z}_{17}, \mathbb{Z}_{100}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
Answer: Notice that 17 is a prime, while 22,100 are not primes.
So $\mathbb{Z}, \mathbb{Z}_{17}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are integral domains. And $\mathbb{Z}_{17}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields

Problem 2. Determine if each of the following maps is a ring homomorphism (no reasons needed)
(1). $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(x)=-x$. No.
(2). $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(x)=x^{2}$. No
(3). $\phi: \mathbb{Z} \times \mathbb{Z}$ given by $\phi((a, b))=b$. Yes
(4). $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(a+b i)=a-b i$. Yes
(5). $\Phi: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{cc}a & -a \\ 0 & 0\end{array}\right)$. Yes.
(6). $\Phi: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$. Yes
(7). $\phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, \phi(x, y)=x$. Yes

Problem 3. Prove that $R=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b, \in \mathbb{R}\right\}$ is a subring of $M_{2}(\mathbb{R})$.
Find a ring homomorphism $\Phi: R \rightarrow \mathbb{R}$ that is onto.
Proof. If $\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & a_{1}\end{array}\right) \in R,\left(\begin{array}{cc}a_{2} & b_{2} \\ 0 & a_{2}\end{array}\right) \in R$, then

$$
\begin{aligned}
& \left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & a_{1}
\end{array}\right)-\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & a_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1}-a_{2} & b_{1}-b_{2} \\
0 & a_{1}-a_{2}
\end{array}\right) \in R \\
& \left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & a_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & a_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} & a_{1} b_{2}+b_{1} a_{2} \\
0 & a_{1} a_{2}
\end{array}\right) \in R .
\end{aligned}
$$

So R is closed under substraction and multiplication. So it is a subring. $\Phi: R \rightarrow \mathbb{R}$ given by

$$
\Phi\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)=a
$$

is a ring homomorphism and onto.

Problem 4. Let R be a commutative ring with unity 1 . An element $a \in R$ is called to be nilpotent if $a^{n}=0$ for some positive integer n.
(1). Prove that if a, b are nilpotent, then so is $a+b$.
(2). Prove that H defined as

$$
H=\{1-a \mid a \in R \text { is nilpotent }\}
$$

is a group under the multiplication.
(3). Suppose R is finite with $|R|=N$, prove that, if $a \in R$ is nilpotent, then

$$
(1-a)^{N}=1 .
$$

Proof. (1). Since a, b are nilpotent, so $a^{m}=0$ and $b^{n}=0$ for some positive integers m, n. Then $(a+b)^{m+n}=\sum_{j=0}^{m+n}\binom{m+n}{j} a^{j} b^{m+n-j}$. If $j \geq m$, $a^{j}=0$; for $0 \leq j<m, m+n-j>n$, so $b^{m+n-j}=0$. This proves every term $a^{j} b^{m+n-j}=0$. So $(a+b)^{m+n}=0$. So $a+b$ is nilpotent.
(2). First, $1=1+0 \in H$. We then prove H is closed. $(1-a)(1-b)=$ $1-(a+b-a b)$. By (1), $a+b$ is nilpotent, since $a b$ is nilpotent (prove it!), so $a+b-a b$ is nilpotent by (1). So $1-(a+b-a b) \in H$. This proves H is closed. For a nilpotent, so $a^{n}=0$ for some positive integer n. Then $(1-a)\left(1+a+\cdots+a^{n-1}\right)=1-a^{n}=1$. Since $-\left(a+\cdots+a^{n-1}\right)$ is nilpotent, so $1+a+\cdots+a^{n-1} \in H$. So every element in H has an inverse in H. This proves H is a group under the multiplication.
(3). Set $S=\{a \in R \mid a$ is nilpotent $\}$. By (1), it is easy to see that S is a subgroup of $(R,+)$. So $|S|$ is a divisor of $|R|=N$, that is, $N=k|S|$. We have a bijection $T: S \rightarrow H, T(a)=1-a$. So $|H|=|S|$. So $N=k|S|=k|H|$. By a corollary of Lagrange Theorem, $(1-a)^{|H|}=1$. So

$$
(1-a)^{N}=(1-a)^{k|H|}=\left((1-a)^{|H|}\right)^{k}=1^{k}=1 \text {. }
$$

