Solutions to Homework 5.

Problem 1. (no reasons needed). Which of the following rings are integral domains, which of them are fields?

 $\mathbb{Z}, \mathbb{Z}_{22}, \mathbb{Z}_{17}, \mathbb{Z}_{100}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Answer: Notice that 17 is a prime, while 22, 100 are not primes. So \mathbb{Z} , \mathbb{Z}_{17} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are integral domains. And \mathbb{Z}_{17} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields

Problem 2. Determine if each of the following maps is a ring homomorphism (no reasons needed)

(1). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(x) = -x$. No. (2). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(x) = x^2$. No (3). $\phi : \mathbb{Z} \times \mathbb{Z}$ given by $\phi((a, b)) = b$. Yes (4). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(a + bi) = a - bi$. Yes (5). $\Phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & -a \\ 0 & 0 \end{pmatrix}$. Yes. (6). $\Phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. Yes (7). $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ \phi(x, y) = x$. Yes

Problem 3. Prove that $R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b, \in \mathbb{R} \}$ is a subring of $M_2(\mathbb{R})$. Find a ring homomorphism $\Phi : R \to \mathbb{R}$ that is onto.

Proof. If
$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \in R, \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} \in R$$
, then
 $\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} - \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 - a_2 & b_1 - b_2 \\ 0 & a_1 - a_2 \end{pmatrix} \in R$
 $\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 a_2 \\ 0 & a_1 a_2 \end{pmatrix} \in R.$

So R is closed under substraction and multiplication. So it is a subring, $\Phi:R\to\mathbb{R} \text{ given by}$

$$\Phi\begin{pmatrix}a&b\\0&a\end{pmatrix} = a$$

is a ring homomorphism and onto.

Problem 4. Let *R* be a commutative ring with unity 1. An element $a \in R$ is called to be **nilpotent** if $a^n = 0$ for some positive integer *n*.

- (1). Prove that if a, b are nilpotent, then so is a + b.
- (2). Prove that H defined as

$$H = \{1 - a \mid a \in R \text{ is nilpotent } \}$$

is a group under the multiplication.

(3). Suppose R is finite with |R| = N, prove that, if $a \in R$ is nilpotent, then

$$(1-a)^N = 1$$

Proof. (1). Since a, b are nilpotent, so $a^m = 0$ and $b^n = 0$ for some positive integers m, n. Then $(a+b)^{m+n} = \sum_{j=0}^{m+n} {m+n \choose j} a^j b^{m+n-j}$. If $j \ge m$, $a^j = 0$; for $0 \le j < m$, m+n-j > n, so $b^{m+n-j} = 0$. This proves every term $a^j b^{m+n-j} = 0$. So $(a+b)^{m+n} = 0$. So a+b is nilpotent.

(2). First, $1 = 1 + 0 \in H$. We then prove H is closed. (1 - a)(1 - b) = 1 - (a + b - ab). By (1), a + b is nilpotent, since ab is nilpotent (prove it!), so a + b - ab is nilpotent by (1). So $1 - (a + b - ab) \in H$. This proves H is closed. For a nilpotent, so $a^n = 0$ for some positive integer n. Then $(1-a)(1+a+\cdots+a^{n-1}) = 1-a^n = 1$. Since $-(a+\cdots+a^{n-1})$ is nilpotent, so $1 + a + \cdots + a^{n-1} \in H$. So every element in H has an inverse in H. This proves H is a group under the multiplication.

(3). Set $S = \{a \in R \mid a \text{ is nilpotent}\}$. By (1), it is easy to see that S is a subgroup of (R, +). So |S| is a divisor of |R| = N, that is, N = k|S|. We have a bijection $T: S \to H, T(a) = 1-a$. So |H| = |S|. So N = k|S| = k|H|. By a corollary of Lagrange Theorem, $(1 - a)^{|H|} = 1$. So

$$(1-a)^N = (1-a)^{k|H|} = ((1-a)^{|H|})^k = 1^k = 1.$$