
Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9

Section 0. Sets and Relations

Basic concepts
Subset of a set, B ⊆ A, B ⊂ A (Definition 0.1). Cartesian product of sets
A × B ( Defintion 0.4). Relation (Defintion 0.7). Function, map, mapping
(all the three words have the same meaning) ( Definition 0.10). One-to-one,
onto ( Definition 0.12). Cardinality (Definition 0.13). Partition (Definition
0.16). Equivalence relation (Definition 0.18).

Theorems
Theorem 0.22. Each equivalence relation on a set S gives a partition of the
set S. Conversely, each partition of S gives an equivalence relation on S.
(the concepts ”euqivalence” and ”partition” are essentially same).

Conventions. Z = the set of integers, Q = the set of rational numbers, R =
the set of real numbers, C = the set of complex numbers.

Problem
(1). If A and B are finite sets with |A| = m and |B| = n, find |A×B|.
(2). If A and B are finite sets with |A| = m and |B| = n, and denote
Map(A,B) the set of all maps from A to B, find |Map(A,B)|.
(3). If A,B are finte sets, and there exists a map f : A → B which is onto
( one-to-one, repectively), what can you say about the relation of |A| and
|B|?
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Section 1 and Section 2

Basic concepts
Each complex number can be written as

a+ bi

where a, b are real numbers. Examples of complex numbers 2 + 5i, 2− 4i, 5
( a = 5, b = 0), 31i ( a = 0, b = 31).
Addition (the rule is that we add the real parts and imginary parts respec-
tively):

(a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i.

Multiplication (the rule is that we use the the disributive law and i2 = −1):

(a+bi)(c+di) = a(c+di)+bi(c+di) = ac+adi+bci+bdi2 = (ac−bd)+(bc+ad)i.

Euler’s formula eiθ = cos θ + sin θ, ei(θ1+θ2) = eiθ1eiθ2 (page 13). n-th roots
of unity,
Un = {z ∈ C | zn = 1} (page 18).

Definition 2.1 A binary operation ∗ on a set S is a map from S ×S to S.
For each (a, b) ∈ S × S, we will denote its image by a ∗ b.

The usual addition on R is a binary operation. The addition + is a assigns
each element (a, b) ∈ R× R an element a+ b ∈ R.

A binary operation ∗ on S is called a commutative binary operation if
a ∗ b = b ∗ a for all a, b ∈ S (Definition 2.11).
A binary operation ∗ on S is called an associative binary operation if
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S (Definition 2.13).

Let S be a set, let Map(S, S) be the set of all maps from S to S itself.
Because for two maps f, g : S → S, we may take their composition f ◦ g (
f ◦g maps each a ∈ S to f(g(a)) ), so the composition ◦ is a binary operation
on Map(S, S)). The composition is associative (Theorem 2.13).

Problems
(1). Suppose S is a finite set with cardinality |S| = n, how many binary
operations on S are there? how many commutative binary operations are
there?
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Section 4. Groups

Basic concepts
Group, identity element, inverse (Definition 4.1). Abelian group (Definition
4.3).

Important examples
(Z,+), the set of integers is a group under addition.
(Q,+), the set of rational numbers is a group under addition.
(R,+), the set of real numbers is a group under addition.
(C,+), the set of complex numbers is a group under addition.
(Q∗, ·), (R∗, ·), (C∗, ·) the sets of nonzero rational numers, the set of non-
zero real numbers, the set of non-zero complext numbers are groups under
multiplication ·.
GL(n,R), the set of invertible n × n matrices, is a group under matrix
multiplication.
Every vector space is a group under the addition.

Theorems
Theorem 4.15(Cancellation Law). If G is a group with binary operation
∗. Then a ∗ b = a ∗ c implies b = c, and b ∗ a = c ∗ a implies b = c.
Corollary 4.18

Problems
Suppose a group (G, ∗) has exactly three elements e, a, b with e as the iden-
tity element. Prove that a ∗ b = b ∗ a = e, a ∗ a = b, b ∗ b = a,
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Section 5. Subgroups

Conventions
When we deal with a unspecified group G, we always denote the binary
operation by ∗, and we often write a ∗ b as ab, a ∗ · · · ∗ a (n copies of a) as
an, the inverse of a as a−1, a−1 ∗ · · · ∗ a−1 (n copies of a−1) as a−n, and
a0 means the identity element e. We state general theorems about groups
using the above conventions.

Basic concepts
Order |G| of a group G (Definition 5.3). Subgroup (Definition 5.4). Cyclic
subgroup generated by a (Definition 5.18). Cyclic group (Definition 5.19).

Theorems
Theorem 5.14. A subset H of a group G is a subgroup if and only if
1. H is closed under the binary operation of G,
2. the identity element e of G is in H.
3. for all a ∈ H, it is true that a−1 ∈ H also.

Theorem 5.17. Let G be a group and let a ∈ G. Then H = {an |n ∈ Z}
is a subgroup of G and is the smallest subgroup of G that contains a, that
is,every subgroup containing a contains H.

Important example
Z ⊂ Q ⊂ R ⊂ C, each ⊂ gives a subgroup relation.
Q∗ ⊂ R∗ ⊂ C∗, each ⊂ gives a subgroup relation.
For each positive integer Un = {z | zn = 1} is a subgroup of C∗.
2 ∈ R∗, the cyclic subgroup of R∗ generated by 2 is {2n |n ∈ Z}.
2 ∈ R, the cyclic subgroup of R∗ generated by 2 is {2n |n ∈ Z}.

Problem (1). Claim: R∗ is a subgroup of C because (1) both R∗ and C are
groups; (2) R∗ is a subset of C. What is wrong about the above argument?
(2). Let G be a finite group, suppose H is a non-empty subset of G that is
closed under the binary operation of G. Prove that H is a subgroup of G.
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Section 6. Cyclic Groups

Basic concepts
A group G is called a cyclic group if there is a ∈ G such that G = 〈a〉 =
{an |n ∈ Z}, that is, every element in G can be written as a power of a.
By our convention, if the binary operation of G is ∗, G is cyclic iff there is
a ∈ G such that every element x ∈ G is x = a ∗ · · · ∗ a(n copies of a) or
x = e or x = a′ ∗ · · · ∗ a′ (n copies of a′, a′ is the inverse of a). Such element
a is called a generator of the cyclic group G. A cyclic group may have more
than 1 generators.

Let a ∈ G, the order of a is |〈a〉|. The order of a is the smallest positve
integer m such that am = e. If there is no positive integer m such that
am = e, the order of a is infinite.
Example. i ∈ C∗ has order 4, 4 ∈ C∗ has order infinite. 4 ∈ Z6 has order 3.

Greatest common divisor (Definition 6.8). Relatively prime.

Important Examples
Z is a cyclic group, because 〈1〉 = Z.
Zn = {0, 1, 2, . . . , n − 1} is a group under + induced from + in Z, it is a
cyclic group, because 〈1〉 = Zn.

Un is a cyclic group, because 〈e
2πi
n 〉 = Un.

Theorems

Theorem 6.1. Every cyclic group is abelian.

Theorem 6.3. Division Algorithm. (Examples: if m = 3, n = 20, then
20 = 3 · 6 + 2 so q = 6, r = 2. If m = 3, n = −20, then −20 = 3 · (−7) + 1,
so q = −7, r = 1.

Thmorem 6.6. A subgroup of a cyclic group is cyclic.

Corollary 6.7. The subgroups of Z are precisely nZ for n ∈ Z.

Problems
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1. Compute the orders

(a). −1, e
2πi
111 , 2006 ∈ C∗.

(b). 1, 2, 3, 4, 5, 6 ∈ Z30.
2. Prove that an infinite cyclic group has exactly two generators.

Section 7. Generating Sets

Basic concepts
The intersection of a collection of sets (Definition 7.3). Subgroup generated
by a subset {ai | i ∈ I}, generators of G, finitely generated (Definition 7.5).

Theorems
Theorem 7.6.

Problems
1. Which of the following statements is correct?
(1). 1 generates Z.
(2). −1 generates Z.
(3). {2, 5} generates Z.
(4). {2, 4, 6} generates Z.
2. Prove that the n× n elementary matrices generate GLn(R).
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Section 8. Groups of Permutations

Basic concepts
Permutation of a set (Definition 8.3). Symmetric group on n letters Sn
(Definition 8.6). An element σ ∈ Sn can be written as a two-row matrix
with the first row always as (1, 2, . . . , n) and the i-th entry of 2nd row is
σ(i). For example,

σ =

(
1 2 3 4 5
4 2 5 3 1

)
is the permutation of {1, 2, 3, 4, 5, } with σ(1) = 4, σ(2) = 2, σ(3) = 5, σ(4) =
3, σ(5) = 1.

Theorems
Theorem 8.5. Let SA be the set of all permutations of a non-empty set A.
Then SA is a group under permutation multiplication.

Problems
(1). What is order of Sn?
(2). Is Sn an abelian group?
(3). Which element in S10 have the largest order?
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Section 9. Orbits, Cycles, and Alternating Groups

Basic concepts
Orbits of a permutation (Definition 9.1). Cycle, length of a cycle (Def-
inition 9.6). Transposition (Definition 9.11). Disjoint cycles (page 89).
Even and odd permutations (Definition 9.18). Alternating group An on
n letters (Definition 9.21).
For example, σ ∈ S5 given by

σ =

(
1 2 3 4 5
4 1 5 2 3

)
has two orbits {1, 2, 4} and {3, 5} ( because 1 7→ 4 7→ 2 7→ 1; 3 7→ 5 7→ 3).
And σ is a product of two disjoint cycles:

σ = (1, 4, 2)(3, 5).

To write σ as a product of transpositions, we only need to write the cycles
(1, 4, 2) and (3, 5) as products of transpositions: (1, 4, 2) = (1, 2)(1, 4), (3, 5)
itself is a transposition. So

σ = (1, 2)(1, 4)(3, 5),

it is a product of 3 transpositions, σ is an odd permutation.

Theorems
Theorem 9.8. Every permutation σ ∈ Sn is a product of disjoint cycles
Corollary 9.12. If n ≥ 2, any σ ∈ Sn is a product of transpositions.
Proof. By Theorem 9.8, σ is a product of disjoint cycles, it suffices to prove
each cycle is a product of transpositions, which is proved by the following
formula:

(a1, a2, . . . ak) = (a1, ak)(a1, ak−1) . . . (a1, a2).

Theorem 9.15. No permutation in Sn can expressed both as a product
of an even number of transpositions and as a product of an odd number of
transpositions.
Theorem 9.20. For n ≥ 2, |An| = n!

2 .

Problems.
Prove that the transpositions (12), (23), . . . , (n− 1, n) generate Sn.
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