Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9

Section 0. Sets and Relations

Basic concepts

Subset of a set, $B \subseteq A, B \subset A$ (Definition 0.1). Cartesian product of sets $A \times B$ (Defintion 0.4). Relation (Defintion 0.7). Function, map, mapping (all the three words have the same meaning) (Definition 0.10). One-to-one, onto (Definition 0.12). Cardinality (Definition 0.13). Partition (Definition 0.16). Equivalence relation (Definition 0.18).

Theorems

Theorem 0.22 . Each equivalence relation on a set S gives a partition of the set S. Conversely, each partition of S gives an equivalence relation on S. (the concepts "euqivalence" and "partition" are essentially same).

Conventions. $\mathbb{Z}=$ the set of integers, $\mathbb{Q}=$ the set of rational numbers, $\mathbb{R}=$ the set of real numbers, $\mathbb{C}=$ the set of complex numbers.

Problem

(1). If A and B are finite sets with $|A|=m$ and $|B|=n$, find $|A \times B|$.
(2). If A and B are finite sets with $|A|=m$ and $|B|=n$, and denote $\operatorname{Map}(A, B)$ the set of all maps from A to B, find $|\operatorname{Map}(A, B)|$.
(3). If A, B are finte sets, and there exists a map $f: A \rightarrow B$ which is onto (one-to-one, repectively), what can you say about the relation of $|A|$ and $|B|$?

Section 1 and Section 2

Basic concepts

Each complex number can be written as

$$
a+b i
$$

where a, b are real numbers. Examples of complex numbers $2+5 i, 2-4 i, 5$ $(a=5, b=0), 31 i(a=0, b=31)$.
Addition (the rule is that we add the real parts and imginary parts respectively):

$$
(a+b i)+\left(a^{\prime}+b^{\prime} i\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) i
$$

Multiplication (the rule is that we use the the disributive law and $i^{2}=-1$):
$(a+b i)(c+d i)=a(c+d i)+b i(c+d i)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(b c+a d) i$.

Euler's formula $e^{i \theta}=\cos \theta+\sin \theta, e^{i\left(\theta_{1}+\theta_{2}\right)}=e^{i \theta_{1}} e^{i \theta_{2}}$ (page 13). n-th roots of unity,
$U_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ (page 18).
Definition 2.1 A binary operation $*$ on a set S is a map from $S \times S$ to S. For each $(a, b) \in S \times S$, we will denote its image by $a * b$.

The usual addition on \mathbb{R} is a binary operation. The addition + is a assigns each element $(a, b) \in \mathbb{R} \times \mathbb{R}$ an element $a+b \in \mathbb{R}$.

A binary operation $*$ on S is called a commutative binary operation if $a * b=b * a$ for all $a, b \in S$ (Definition 2.11).
A binary operation $*$ on S is called an associative binary operation if $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$ (Definition 2.13).

Let S be a set, let $\operatorname{Map}(S, S)$ be the set of all maps from S to S itself. Because for two maps $f, g: S \rightarrow S$, we may take their composition $f \circ g$ ($f \circ g$ maps each $a \in S$ to $f(g(a)))$, so the composition \circ is a binary operation on $\operatorname{Map}(S, S)$). The composition is associative (Theorem 2.13).

Problems

(1). Suppose S is a finite set with cardinality $|S|=n$, how many binary operations on S are there? how many commutative binary operations are there?

Section 4. Groups

Basic concepts

Group, identity element, inverse (Definition 4.1). Abelian group (Definition 4.3).

Important examples
$(\mathbb{Z},+)$, the set of integers is a group under addition.
$(\mathbb{Q},+)$, the set of rational numbers is a group under addition.
$(\mathbb{R},+)$, the set of real numbers is a group under addition.
$(\mathbb{C},+)$, the set of complex numbers is a group under addition.
$\left(\mathbb{Q}^{*}, \cdot\right),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)$ the sets of nonzero rational numers, the set of nonzero real numbers, the set of non-zero complext numbers are groups under multiplication \cdot.
$G L(n, \mathbb{R})$, the set of invertible $n \times n$ matrices, is a group under matrix multiplication.
Every vector space is a group under the addition.

Theorems

Theorem 4.15(Cancellation Law). If G is a group with binary operation *. Then $a * b=a * c$ implies $b=c$, and $b * a=c * a$ implies $b=c$.

Corollary 4.18

Problems

Suppose a group $(G, *)$ has exactly three elements e, a, b with e as the identity element. Prove that $a * b=b * a=e, a * a=b, b * b=a$,

Section 5. Subgroups

Conventions

When we deal with a unspecified group G, we always denote the binary operation by $*$, and we often write $a * b$ as $a b, a * \cdots * a$ (n copies of a) as a^{n}, the inverse of a as $a^{-1}, a^{-1} * \cdots * a^{-1}\left(n\right.$ copies of $\left.a^{-1}\right)$ as a^{-n}, and a^{0} means the identity element e. We state general theorems about groups using the above conventions.

Basic concepts

Order $|G|$ of a group G (Definition 5.3). Subgroup (Definition 5.4). Cyclic subgroup generated by a (Definition 5.18). Cyclic group (Definition 5.19).

Theorems

Theorem 5.14. A subset H of a group G is a subgroup if and only if

1. H is closed under the binary operation of G,
2. the identity element e of G is in H.
3. for all $a \in H$, it is true that $a^{-1} \in H$ also.

Theorem 5.17. Let G be a group and let $a \in G$. Then $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G and is the smallest subgroup of G that contains a, that is,every subgroup containing a contains H.

Important example

$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, each \subset gives a subgroup relation.
$\mathbb{Q}^{*} \subset \mathbb{R}^{*} \subset \mathbb{C}^{*}$, each \subset gives a subgroup relation.
For each positive integer $U_{n}=\left\{z \mid z^{n}=1\right\}$ is a subgroup of \mathbb{C}^{*}.
$2 \in \mathbb{R}^{*}$, the cyclic subgroup of \mathbb{R}^{*} generated by 2 is $\left\{2^{n} \mid n \in \mathbb{Z}\right\}$.
$2 \in \mathbb{R}$, the cyclic subgroup of \mathbb{R}^{*} generated by 2 is $\{2 n \mid n \in \mathbb{Z}\}$.
Problem (1). Claim: \mathbb{R}^{*} is a subgroup of \mathbb{C} because (1) both \mathbb{R}^{*} and \mathbb{C} are groups; (2) \mathbb{R}^{*} is a subset of \mathbb{C}. What is wrong about the above argument? (2). Let G be a finite group, suppose H is a non-empty subset of G that is closed under the binary operation of G. Prove that H is a subgroup of G.

Section 6. Cyclic Groups

Basic concepts

A group G is called a cyclic group if there is $a \in G$ such that $G=\langle a\rangle=$ $\left\{a^{n} \mid n \in \mathbb{Z}\right\}$, that is, every element in G can be written as a power of a. By our convention, if the binary operation of G is $*, G$ is cyclic iff there is $a \in G$ such that every element $x \in G$ is $x=a * \cdots * a(\mathrm{n}$ copies of a) or $x=e$ or $x=a^{\prime} * \cdots * a^{\prime}$ (n copies of a^{\prime}, a^{\prime} is the inverse of a). Such element a is called a generator of the cyclic group G. A cyclic group may have more than 1 generators.

Let $a \in G$, the order of a is $|\langle a\rangle|$. The order of a is the smallest positve integer m such that $a^{m}=e$. If there is no positive integer m such that $a^{m}=e$, the order of a is infinite.
Example. $i \in \mathbb{C}^{*}$ has order $4,4 \in \mathbb{C}^{*}$ has order infinite. $4 \in \mathbb{Z}_{6}$ has order 3 .

Greatest common divisor (Definition 6.8). Relatively prime.

Important Examples
\mathbb{Z} is a cyclic group, because $\langle 1\rangle=\mathbb{Z}$.
$\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ is a group under + induced from + in \mathbb{Z}, it is a cyclic group, because $\langle 1\rangle=\mathbb{Z}_{n}$.
U_{n} is a cyclic group, because $\left\langle e^{\frac{2 \pi i}{n}}\right\rangle=U_{n}$.

Theorems

Theorem 6.1. Every cyclic group is abelian.
Theorem 6.3. Division Algorithm. (Examples: if $m=3, n=20$, then $20=3 \cdot 6+2$ so $q=6, r=2$. If $m=3, n=-20$, then $-20=3 \cdot(-7)+1$, so $q=-7, r=1$.

Thmorem 6.6. A subgroup of a cyclic group is cyclic.
Corollary 6.7. The subgroups of \mathbb{Z} are precisely $n \mathbb{Z}$ for $n \in \mathbb{Z}$.

Problems

1. Compute the orders
(a). $-1, e^{\frac{2 \pi i}{111}}, 2006 \in \mathbb{C}^{*}$.
(b). $1,2,3,4,5,6 \in \mathbb{Z}_{30}$.
2. Prove that an infinite cyclic group has exactly two generators.

Section 7. Generating Sets

Basic concepts

The intersection of a collection of sets (Definition 7.3). Subgroup generated by a subset $\left\{a_{i} \mid i \in I\right\}$, generators of G, finitely generated (Definition 7.5).

Theorems

Theorem 7.6.

Problems

1. Which of the following statements is correct?
(1). 1 generates \mathbb{Z}.
(2). -1 generates \mathbb{Z}.
(3). $\{2,5\}$ generates \mathbb{Z}.
(4). $\{2,4,6\}$ generates \mathbb{Z}.
2. Prove that the $n \times n$ elementary matrices generate $G L_{n}(\mathbb{R})$.

Section 8. Groups of Permutations

Basic concepts

Permutation of a set (Definition 8.3). Symmetric group on n letters S_{n} (Definition 8.6). An element $\sigma \in S_{n}$ can be written as a two-row matrix with the first row always as $(1,2, \ldots, n)$ and the i-th entry of 2 nd row is $\sigma(i)$. For example,

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 5 & 3 & 1
\end{array}\right)
$$

is the permutation of $\{1,2,3,4,5$,$\} with \sigma(1)=4, \sigma(2)=2, \sigma(3)=5, \sigma(4)=$ $3, \sigma(5)=1$.

Theorems

Theorem 8.5. Let S_{A} be the set of all permutations of a non-empty set A. Then S_{A} is a group under permutation multiplication.

Problems

(1). What is order of S_{n} ?
(2). Is S_{n} an abelian group?
(3). Which element in S_{10} have the largest order?

Section 9. Orbits, Cycles, and Alternating Groups

Basic concepts

Orbits of a permutation (Definition 9.1). Cycle, length of a cycle (Definition 9.6). Transposition (Definition 9.11). Disjoint cycles (page 89). Even and odd permutations (Definition 9.18). Alternating group A_{n} on n letters (Definition 9.21).
For example, $\sigma \in S_{5}$ given by

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 5 & 2 & 3
\end{array}\right)
$$

has two orbits $\{1,2,4\}$ and $\{3,5\}$ (because $1 \mapsto 4 \mapsto 2 \mapsto 1 ; 3 \mapsto 5 \mapsto 3$). And σ is a product of two disjoint cycles:

$$
\sigma=(1,4,2)(3,5)
$$

To write σ as a product of transpositions, we only need to write the cycles $(1,4,2)$ and $(3,5)$ as products of transpositions: $(1,4,2)=(1,2)(1,4),(3,5)$ itself is a transposition. So

$$
\sigma=(1,2)(1,4)(3,5),
$$

it is a product of 3 transpositions, σ is an odd permutation.

Theorems

Theorem 9.8. Every permutation $\sigma \in S_{n}$ is a product of disjoint cycles Corollary 9.12. If $n \geq 2$, any $\sigma \in S_{n}$ is a product of transpositions.
Proof. By Theorem 9.8, σ is a product of disjoint cycles, it suffices to prove each cycle is a product of transpositions, which is proved by the following formula:

$$
\left(a_{1}, a_{2}, \ldots a_{k}\right)=\left(a_{1}, a_{k}\right)\left(a_{1}, a_{k-1}\right) \ldots\left(a_{1}, a_{2}\right) .
$$

Theorem 9.15. No permutation in S_{n} can expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
Theorem 9.20. For $n \geq 2,\left|A_{n}\right|=\frac{n!}{2}$.

Problems.

Prove that the transpositions (12), (23), $\ldots,(n-1, n)$ generate S_{n}.

