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Math 311, A Summary of Sections 10,11,13,14,16,18,19,20,21,22,26

Section 10. Cosets and the Theorem of Lagrange

Basic concepts
Left coset of a subgroup, right coset of a subgroup (Definition 10.2). Index (G : H) (Definition
10.13).
For example, U4 = {1, i,−1,−i} is a subgroup of C∗. The left coset 2U4 , 10U4 are

2U4 = {2h |h ∈ U4} = {2, 2i,−2,−2i}, 10U4 = {10, 10i,−10,−10i}.

And since C∗ is abelian, each left coset is also a right coset: aU4 = U4a.
Another example: H = 3Z is a subgroup of Z, H has three left cosets (they are also right cosets
as Z is abelian):

3Z, 1 + 3Z, 2 + 3Z.

A very important of property of left cosets: for two left cosets aH and bH, then either aH = bH
or aH ∩ bH is empty.

Theorems
Theorem 10.10 (Lagrange Theorem). If G is a finite group and H ⊆ G is a subgroup. Then
|H| is a divisor of |G|.
Sketch of Proof. Let a1H, a2H, . . . , arH be the complete list of all left cosets of H. Step 1.
Prove each left coset aiH has exactly |H| elements. Step 2. a1H, a2H, . . . , arH forms a patition
of G. Step 3. By steps 1 and 2, we have |G| = |a1H|+ · · ·+ |arH| = r|H|, so |H| is a divisor of
G|.

Corollary 10.11. Let G be a group, if |G| is a prime, then G is cyclic.

Theorem 10.12 The order of an element of a finite group G is a divisor of |G|.

Theorem 10.14. If H and K are subgroups of a finite group G, and K ⊆ H, then (G : K) =
(G : H)(H : K).

Problems
Suppose n ≥ 2. Prove that the set of all odd permutations in Sn is a left coset and also a right
coset of An. Find (Sn : An).
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Section 11. Direct Products of Finitely Generated Abelian Groups

Basic concepts
Cartesian product of sets S1, S2, . . . , Sn (Definition 11.1). Direct product of groupsG1, G2, . . . , Gn
(Theorem 11.2).
For example, the direct product of two groups G1 and G2 is

G1 ×G2 = {(a1, a2) | a1 ∈ G1, a2 ∈ G2.}

with the binary operation given by (a1, a2)(b1, b2) = (a1b1, a2b2).

Theorems
Theorem 11.5. The group Zm × Zn is cyclic if and only if m and n are relatively prime.

Theorem 11.12. Every finitely generated abelian group is isomorphic to a direct product of
cyclic groups in the form

Z(p1)r1 × Z(p2)r2 × · · · × Z(pn)rn × Z× Z× · · · × Z,

where the pi are primes, not necessarily distinct, and ri are positive integers. The direct product
is unique except for possible rearrangement of the factors.
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Section 13. Homomorphisms

Basic concepts
Homomorphism (Definition 13.1). Let (G, ∗) and (G′, ?) be groups, a map φ : G → G′ is a
homomorphism if for all a, b ∈ G,

φ(a ∗ b) = φ(a) ? φ(b).

The map φ : G→ G′ given by φ(x) = e′ for all x ∈ G is a homomorphism, We call it the trivial
homomorphism (page 126). Image φ[A], inverse image φ−1[B] (Definition 13.11). Kernel of a
homomorphism φ : G→ G′ (Definition 13.13), denoted by Ker(φ), is

Ker(φ) = {x ∈ G | φ(x) = e′}.

Normal subgroup (Definition 13.19). Isomorphism (page 132): φ : G → G′ is called an isomor-
phism if (1). φ is a homomorphism. (2). φ is one-to-one. (3). φ is onto.

Examples
(1). φ : R→ R given by φ(x) = 100x is a homomorphism from the group R to itself, because

φ(a+ b) = φ(a) + φ(b), ←→ 100(a+ b) = 100a+ 100b.

(2). φ : R→ R∗ given by φ(x) = ex is homomorphism from R→ R∗, because

φ(a+ b) = φ(a)φ(b), ←→ ea+b = eaeb.

(3). φ : R∗ → R given by φ(a) = ln(|a|) is a homomorphism from R∗ to R, bacause

φ(ab) = φ(a) + φ(b), ←→ ln(|ab|) = ln(|a|) + ln(|b|).

(4). Example 13.10. γ : Z→ Zn given by γ(m) = r, where r is the remainder of m divided by
n.

Theorems
Theorem 13.12. Theorem 13.15. Corollary 13.18. Corollary 13.20.

Problems
1. Find a homomorphism from C∗ to U that is onto.
2. Find a homomorphsim from C∗ to GL(2,R) that is one-to-one (hint: it is related to Exercise
23 page 27).
2. Find an isomorphism φ : Zn → Un.
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Section 14. Factor Groups

Basic concepts
Factor group (or quotient group) (Definition 14.6). Automorphism, inner automorphism.

Theorems
Theorem 14.4, Corollary 14.5. Let H be a normal subgroup of G. Let G/H denote the set
of all left cosets of H. Then the left coset multiplication

(aH)(bH) = (ab)H

is well-defined and G/H is a group under this binary operation.

Theorem 14.9. Theorem 14.11. Theorem 14.13.

Example . For each positive integer n, nZ is a normal subgroup of Z, Z/nZ consists of n-
elements:

nZ, 1 + nZ, 2 + nZ, . . . , n− 1 + nZ.

The quotient group Z/nZ is the same as Zn.
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Section 16. Group Action on a Set

Basic concepts
The concept of ”group action” is very important, which provides an abstract model to study
symmetries.
Definition 16.1 Let X be a set and G a grouop. An action of G on X is a map ∗ : G × X
(we write the image of (g, x) as g ∗ x or often as gx) such that
(1). e ∗ x = x for all x ∈ X. (2). (g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all g1, g2 ∈ G and all x ∈ X.

Faithful action, transitive action (page 155). Isotropy subgroup (Definition 16.13). Orbit (Defi-
nition 16.14), if G acts on X, x ∈ X, the orbit of a, denoted by Gx, is the set

Gx = {gx | g ∈ G}.

Examples
(1). Sn acts on X = {1, 2, . . . , n} by σ ∗ k = σ(k). This action is faithful and transitive.
(2). GL(n,R) acts on Rn by matrix multiplication. This action is faithful but not transitive.

Theorems
Theorem 16.3. Let G be a group and X a set. An action of G on X is equivalent to a
homomorphism from G to SX .

Theorem 16.12. Let G act on X, for x ∈ X, put

Gx = {g ∈ G | gx = x}.

Then Gx is a subgroup of G (Gx is called the isotropy subgroup of x).

Theorem 16.14. Let X be a G-set. For x1, x2 ∈ X, let x1 ∼ x2 if and only if there exists g ∈ G
such that bx1 = x2. Then ∼ is an equivalence relation on X.

Theorem 16.16. Let G act on X, suppose G is finite, then |Gx| = (G : Gx) = |G|
|Gx| . In particular

|Gx| is a divisor of |G|.
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Section 18. Rings and Fields

Basic concepts
Ring (Definition 18.1). A ring (R,+, ·) is a set together with two binary operations + and ·, such
that the following axioms are satisfied:
(1). (R,+) is an abelian group.
(2). Multiplication · is associative: (a · b) · c = a · (b · c).
(3). Distributive laws: for all a, b, c ∈ R,

a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a.

Direct product of rings R1 ×R2 × · · · ×Rn (page 169).
Ring homomorphism (Definition 18.9). For rings R and R′, a map φ : R → R′ is called a ring
homomorphism if

φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b)

for all a, b ∈ R.
Kernel of a ring homomorphism (page 171). Isomorphism of rings (Definition 18.12).
Commutative ring. A ring R is called commutative ring if ab = ba for all a, b ∈ R.
Unity. Ring with unity (Definition 18.14). Unit, division ring, field (Definition 18.16). Subring
(page 173). Subfield (page 173).

Examples
(1). Z,Q,R,C are commutative rings. Q,R,C are fields, but Z is not a field.
(2). Let R be any ring, Mn(R) be the set of all n×n matrices with all entries in R. Then Mn(R)
is a ring. In particular, Mn(Z),Mn(Q),Mn(R),Mn(C) are rings. They are not commutative if
n ≥ 2.
(3). For a given positive integer, Zn = {0, 1, . . . , n − 1} is a commutative ring. For example
Z4 = {0, 1, 2, 3}, the multiplication is

0 · 0 = 0, 0 · 1 = 0, 0 · 2 = 0, 0 · 3 = 0, 1 · 1 = 1, 1 · 2 = 2, 1 · 3 = 3,

2 · 2 = 4 = 0, 2 · 3 = 6 = 2, 3 · 3 = 9 = 1.

Theorems
Theorem 18.8.

Problem
If p is a prime, prove that Zp is a field.
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Section 19. Integral Domains

Basic concepts
Zero divisor (Definition 19.2): let R be a ring, if a, b ∈ R satisfy

ab = 0, a 6= 0, b 6= 0,

then a, b are called 0 divisors (or zero divisors or divisor of 0).
Integral domain (Definition 19.6). A ring R is called an integral domain if the following conditions
are satisfied: (1). R is commutative; (2). R has a unity 1 and 1 6= 0; (3). R has no zero divisors.
Characteristic of a ring R (Definition 19.13). Characteristic 0 (Definition 19.13).

Examples
(1). A field is always an integral domain. In particular, since Q,R,C are fields, they are integral
domains. Z is an integral domain, but not a field.
(2). In the commutative Z6 = {0, 1, 2, 3, 4, 5}, 2, 3, 4 are 0 divisors ( because 2 · 3 = 0, 4 · 3 = 0).
1 and 5 are units. Z6 is not an integral domain. In general if n is not a prime, then Zn is not
an integral domain.
(3). The characteristic of the ring Zn is n. The characteristic of the rings Z,Q,R,C are all 0.

Theorems
Theorem 19.3. In the ring Zn, the 0 divisors are precisely those nonzero elements that are not
relatively prime to n.

Theorem 19.5. Theorem 19.15.

Corollary 19.4. Theorem 19.9. Theorem 19.11. Corollary 19.12.
(1). Every field is an integral domain.
(2). Every finite integral domain is a field.
(3). If p is a prime, then Zp is an integral domain.
(4). If p is a prime, then Zp is a field.
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Section 20. Fermat’s and Euler’s Theorems

Basic concepts
Group Gn (page 186), Gn is the set of all nonzero elements in Zn that are not zero divisors, Gn
is a group under multiplicatiom modulo n (Theorem 20.6). Euler phi-function (page 187) , for
any positive integer n,

φ(n) = |Gn| = the number of elements inZn that are relatively prime ton.

Theorems
For any field, the nonzero elements form a group under the multiplication (page 184).

Theorem 20.1 (Fermat’s Little Theorem). If p is a prime, and a ∈ Z is not divisible by p,
then ap−1 − 1 is a multiple of p.

Corollary 20.2. If p is a prime, a ∈ Z, then ap − a is a multiple of p.

Theorem 20.6. Let Gn be the set of all nonzero elements in Zn that are not zero divisors, then
Gn is a group under multiplicatiom modulo n.

Theorem 20.8 (Euler’s Theorem). If a is an integer relatively prime to n, then aφ(n) − 1 is
a multiple of n.

Examples
G10 = {1, 3, 7, 9}, the inverse of 3−1 = 7 (since 3 · 7 = 21 = 1). φ(10) = 4.
G9 = {1, 2, 4, 5, 7, 8, }, φ(9) = 6.

Problems
1. If p is a prime, prove that

φ(pn) = pn − pn−1.

2. If m and n are reltively prime, prove that

φ(mn) = φ(m)φ(n).
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Section 21. The Field of Quotients of an Integral Domain

The main result of this section is Theorem 21.5. The proof of this theorem (i.e. a construc-
tion of a field of quotients F for an integral domain D) is given on page 191-194 (steps 1,2,3,4).
The uniqueness of the field of quotients is given in Theorem 21.6.

Example.
If the Integral domain is Z, its field of quotients is Q.

Section 22. Rings of Polynomials

Basic concepts
A polynomial f(x) with coefficients in a ring R, degree of f(x) (Definition 22.1). The ring of
polynomials R[x] (Theorem 22.2). Zeros of f(x) (Definition 22.10).

Theorems
Theorem 22.2. Theorem 22.4.

Section 26. Homomorphisms and Factor Rings

Basic concepts
Ring homomorphism (Definition 26.1). Kernel (Definition 26.4). Ideal (Definition 26.10). Quo-
tient ring (Definition 26.14).

Theorems
Theorem 26.3. Theorem 26.5. Corollary 26.6. Theorem 26.7. Theorem 26.9. Corol-
lary 26.14. Theorem 26.16. Theorem 26.17.

Problems
1. Find all the ideals of Z.
2. Let F be a field, prove that the matrix ring Mn(F ) has only two ideals {0} and Mn(F )

itself.
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