Solutions to Quiz version 1

Problem 1. (25 points) Compute the order of the given element in a group.
(a). 4, 5, 7 in Z₁₀.
(b). i, ^{√2}/₂ + ^{√2}/₂ i in C*.

Answer: (a) The order of 4 is 5; the order of 5 is 2; the order of 7 is 10. (b). The order of *i* is 4. The order of $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ is 8.

Problem 2. (25 points) Determine whether the given set of invertible 2×2 matrices is a subgroup of $GL(2, \mathbb{R})$ (just answer "Yes" or "No", no reasons needed)

(1). The set of 2×2 upper triangular matrices with positive numbers on the diagonal. **Yes**

(2). The set of 2×2 diagonal matrices with diagonal entries greater than 1. No

(3). The set of 2×2 upper triangular matrices with diagonal entries equal to 1. Yes

(4). The set of 2×2 diagonal matrices with determinant 1. Yes

(5). The set of 2×2 diagonal matrices with determinant 3. No

Problem 3. (25 points) Let $\sigma \in S_8$ be of the form

Suppose σ is an odd permutation,

(1). Find a and b. (2). Decompose σ as a product of disjoint cycles.

(3). Compute the order of σ . (4). Compute σ^{2013} .

Answer: (1). a = 4, b = 2.

(2). $\sigma = (1,3,7)(2,6,8,5)$. (3). The order of σ is 12.

(4). $2013 = 167 \cdot 12 + 9$, so

$$\sigma^{2013} = \sigma^9 = (1,3,7)^9 (2,6,8,5)^9 = (2,6,8,5)^9 = (2,6,8,5)$$

Problem 4. (20 points) (1). Suppose G is an abelian group, prove that $H = \{a \in G \mid a^2 = e\}$ is a subgroup of G.

(2). Find an example of a group G such that $H = \{a \in G \mid a^2 = e\}$ is NOT a subgroup of G, and give reasons.

Answer: (1) Since $e^2 = e$, so $e \in H$. If $a, b \in H$, then $(ab)^2 = abab = aabb = a^2b^2 = e$, where the second = follows from the condition G is abelian. So $ab \in H$. This proves H is closed under the binary operation. If $a \in H$, then $a^2 = e$, so $a^{-1} = a \in H$. This proves H is a subgroup. (b). The easiest example is $G = S_3$. Then

$$H = \{e, (1, 2), (2, 3), (1, 3)\}\$$

which is not a subgroup of S_3 , as $(12)(13) = (132) \notin H$, it is NOT closed. Other possible answer is $GL(2,\mathbb{R})$ or $GL(n,\mathbb{R})$ for $n \geq 2$. You need to show H is not closed by explicitly giving an example. For example

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \in H, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \notin H.$$

Problem 5. (5 points) Let G be a finite group such that the order |G| is an odd number. Suppose $a \in G$ satisfies $a^4 = e$, prove that a = e.

Answer: Because the order of a is a divisor of |G|, so the order of a is an odd number since it is a divisor of odd number |G|. This together with $a^4 = e$ imply that the order of a is 1 or 3. If the order of a is 1, then a = e, we are done. If the order of a is 3, then $a^3 = e$, since $a^4 = e$, so a = e, contradiction. This completes the proof.

A slight different proof: Since $a^4 = e$, so the order of a is 1, 2 or 4. The order of a is divisor of |G| which is odd, so the order of a is odd. Therefore the order of a is 1, so a = e.