Solutions to Quiz version 2

Problem 1. (25 points) Compute the order of the given element in a group.
(a). $4,5,6$ in \mathbb{Z}_{8}.
(b). $i, \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ in \mathbb{C}^{*}.

Answer: (a). The order of 4 is 2 ; the order of 5 is 8 ; the order of 6 is 4 .
(b). The order of i is 4 ; the roder of $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ is 8 .

Problem 2. (25 points) Determine whether the given set of invertible 2×2 matrices is a subgroup of $G L(2, \mathbb{R})$ (just answer "Yes" or "No", no reasons needed)
(1). The set of 2×2 upper triangular matrices with positive numbers on the diagonal. Yes
(2). The set of 2×2 upper triangular matrices with diagonal entries equal to 1 . Yes
(3). The set of 2×2 diagonal matrices with diagonal entries greater than 1 .

No
(4). The set of 2×2 diagonal matrices with determinant 3 . No
(5). The set of 2×2 diagonal matrices with determinant 1 . Yes

Problem 3. (25 points) Let $\sigma \in S_{8}$ be of the form

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 6 & 7 & a & b & 8 & 1 & 5
\end{array}\right)
$$

Suppose σ is an even permutation,
(1). Find a and b. (2). Decompose σ as a product of disjoint cycles.
(3). Compute the order of σ. (4). Comupte σ^{2015}.

Answer: (1). $a=2, b=4$. (2). $\sigma=(1,3,7)(2,6,8,5,4)$.
(3). The order of σ is 15 .
(4). $2015=144 \cdot 15+5$, so $\sigma^{2015}=\sigma^{5}=(1,3,7)^{5}(2,6,8,5,4)^{5}=(1,3,7)^{5}=$ $(1,3,7)^{5}=(1,7,3)$

Problem 4. (20 points) (1). Suppose G is an abelian group, prove that $H=\left\{a \in G \mid a^{2}=e\right\}$ is a subgroup of G.
(2). Find an example of a group G such that $H=\left\{a \in G \mid a^{2}=e\right\}$ is NOT a subgroup of G, and give reasons.

Answer: (1) Since $e^{2}=e$, so $e \in H$. If $a, b \in H$, the $(a b)^{2}=a b a b=a a b b=$ $a^{2} b^{2}=e$, where the second $=$ follows from the condition G is abelian. So $a b \in H$. This proves H is closed under the binary operation. If $a \in H$, then $a^{2}=e$, so $a^{-1}=a \in H$. This proves H is a subgroup.
(b). The easiest example is $G=S_{3}$. Then

$$
H=\{e,(1,2),(2,3),(1,3)\}
$$

which is not a subgroup of S_{3}, as $(1,3)(1,2)=(1,2,3) \notin H$, it is not closed. Other possible answer is $G L(2, \mathbb{R})$ or $G L(n, \mathbb{R})$ for $n \geq 2$. You need to show H is not closed by explicitly giving an example. For example

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right) \in H,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \notin H .
$$

Problem 5. (5 points) Let G be a finite group such that the order $|G|$ is an odd number. Suppose $a \in G$ satisfies $a^{4}=e$, prove that $a=e$.

Answer: Because the order of a is a divisor of $|G|$, so the order of a is an odd number since it is a divisor of odd number $|G|$. This together with $a^{4}=e$ imply that the order of a is 1 or 3 . If the order of a is 1 , then $a=e$, we are done. If the order of a is 3 , then $a^{3}=e$, since $a^{4}=e$, so $a=e$, contradiction. This completes the proof.

A slight different proof: Since $a^{4}=e$, so the order of a is 1,2 or 4 . The order of a is divisor of $|G|$ which is odd, so the order of a is odd. Therefore the order of a is 1 , so $a=e$.

