Homework No.5 for Math 3121

Due Date: Nov. 29

Problem 1. (no reasons needed). Which of the following rings are integral domains, which of them are fields?

 $\mathbb{Z}, \mathbb{Z}_{22}, \mathbb{Z}_{17}, \mathbb{Z}_{100}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Problem 2. Determine if each of the following maps is a ring homomorphism (no reasons needed)

(1). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(x) = -x$. (2). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(x) = x^2$. (3). $\phi : \mathbb{Z} \times \mathbb{Z}$ given by $\phi((a, b)) = b$. (4). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi((a + bi)) = a - bi$. (5). $\Phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & -a \\ 0 & 0 \end{pmatrix}$. (6). $\Phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$. (7). $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ \phi(x, y) = x$. Problem 3. Prove that $R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{R} \}$ is a subring of $M_2(\mathbb{R})$

Problem 3. Prove that $R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b, \in \mathbb{R} \}$ is a subring of $M_2(\mathbb{R})$. Find a ring homomorphism $\Phi : R \to \mathbb{R}$ that is onto.

Problem 4. Let *R* be a commutative ring with unity 1. An element $a \in R$ is called to be **nilpotent** if $a^n = 0$ for some positive integer *n*.

(1). Prove that if a, b are nilpotent, then so is a + b.

(2). Prove that H defined as

$$H = \{1 - a \mid a \in R \text{ is nilpotent } \}$$

is a group under the multiplication.

(3). Suppose R is finite with |R| = N, prove that, if $a \in R$ is nilpotent, then

$$(1-a)^N = 1.$$