Solutions to Quiz (Version 1)

Problem 1. (15 points) Compute the order of the given element in a group (just write down your answer, no details needed).
(a). $9 \in \mathbb{Z}_{12}$.
(b). $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i \in \mathbb{C}^{*}$.
(c). $\left(\begin{array}{ll}-1 & 2 \\ -1 & 1\end{array}\right) \in G L(2, \mathbb{R})$.

Answer: (a). $4 . \quad$ (b). 8. (c). 4.

Problem 2. (15 points) Determine whether the given set of invertible 2×2 matrices is a subgroup of $G L(2, \mathbb{R})$ (just answer "Yes" or "No", no reasons needed)
(1). The set of 2×2 matrices with positive determinant.
(2). The set of 2×2 diagonal matrices with positive numbers on the diagonal.
(3). The set of 2×2 matrices with negative determinant.

Answer: (1). Yes. (2). Yes. (c). No.

Problem 3. (25 points) (no details needed). Let $\sigma \in S_{8}$ be of the form

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 7 & 5 & 1 & 8 & 4 & a & b
\end{array}\right)
$$

Suppose σ is an odd permutation,
(1). Find a and b. (2). Decompose σ as a product of disjoint cycles.
(3). Compute the order of σ. (4). Comupte σ^{2020}.
(5). Decompose σ^{-1} as a product of disjoint cycles.

Answer: (1). $a=2, b=3$. (2). $\sigma=(164)(358)(27) . \quad$ (3). 6. (4). $2020=6 \cdot 336+4$, so

$$
\sigma^{2020}=\sigma^{4}=(164)^{4}(358)^{4}(27)^{4}=(164)(358)
$$

(5). $\sigma^{-1}=(146)(385)(27)$.

Problem 4. (20 points) Let G be a group, H be the subset given by $H=$ $\left\{a \in G \mid a^{2}=e\right\}$.
(1). Suppose G is abelian, prove that H is a subgroup.
(2). Give an example of a group G such that $H=\left\{a \in G \mid a^{2}=e\right\}$ is not a subgroup of G.

Proof of (1). If $a, b \in H$, then $a^{2}=b^{2}=e .(a b)^{2}=a^{2} b^{2}=e$, in the first $=$, we used $a b=b a$ as G is abelian. so $a b \in H$. This proves that H is closed. Since $e^{2}=e$, so $e \in H$. If $a \in H, a^{2}=e,\left(a^{2}\right)^{-1}=e^{-1},\left(a^{-1}\right)^{2}=e$, so $a^{-1} \in H$. This proves $a \in H$ implies that $a^{-1} \in H$. So H is a subgroup of G.
(2). Our example of G must be non-abelian. We take $G=S_{3}$, then $H=$ $\{e,(12),(23),(13)\}$, which is NOT a subgroup of G.

Problem 5. (15 points). Let G be a group, suppose $a \in G$ has order 100 . Prove that $a^{n}=e$ (where n is an integer) implies that n is a multiple of 100 .

Proof. By the division algorithm, $n=100 q+r$, where $0 \leq r<100$. $e=a^{n}=a^{100 q+r}=\left(a^{100}\right)^{q} a^{r}=a^{r}$. Since 100 is the order of a, for any $1 \leq k<100, a^{k} \neq e$. So $a^{r}=0$ and $0 \leq r<100$ imply that $r=0$. This proves $n=100 q$ is a multiple of 100 .

Problem 6. (10 points). Let a and b be elements of a group G. (1) Prove that for every positive integer $m,(a b)^{m}=a(b a)^{m} a^{-1}$ 。(2). Prove that $a b$ and $b a$ have the equal order.

Proof. (1). $(a b)^{m}=a b a b \cdots a b$ (m copies of ab$)=a(b a)^{m-1} b=a(b a)^{m-1} b a a^{-1}=$ $a(b a)^{m} a^{-1}$.
(2) $(a b)^{m}=e$ iff $a(b a)^{m} a^{-1}=e$ iff $a^{-1} a(b a)^{m} a^{-1} a=a^{-1} e a$ iff $(b a)^{m}=e$.

This proves $(a b)^{m}=e$ iff $(b a)^{m}=e$. So $a b$ and $b a$ have the equal order.

