
Math 3121, Sections 13, 14, 16, 18, 19, 20, 21, 26

This note includes all the lecture notes after the quiz.

Section 13. Homomorphisms.

Definition 13.1. Let (G, ∗) and (G′, ?) be groups, a map φ : G→ G′ is a homomorphism if for all
a, b ∈ G,

φ(a ∗ b) = φ(a) ? φ(b).

Example 1. φ : R→ R∗ given by
φ(x) = ex

is a homomorphism. Notice that the operation for R is + and the operation for R∗ is the multiplication
·, the fact that φ is a homomorphism follows from the identity ea+b = ea eb. Similarly, for arbitrary
base c > 0, the map f : R → R∗, f(x) = cx is a homomorphism. The map g : C → C∗ given by
g(z) = ez is a homomorphism.

Example 2. Let R>0 be the multiplicative group of positive real numbers. The map φ : R>0 → R
given by

φ(x) = log x

is a homomorphism, this follows from identity

log(ab) = log a+ log b.

Example 3. The map φ : R∗ → R∗ given by

φ(x) = xn

is a homomorphism, where n is a fixed integer. Notice that both G and G′ are multiplicative groups
(both are R∗). The homomorphism property follows from the identity (ab)n = anbn.

Example 4. The map φ : GL(2,R)→ R∗ given by

φ(A) = Det(A)

is a homomorphism, where Det(A) is the determinant of 2×2 matrix A. The homomorphism property
follows from the following identity about determinant: Det(AB) = Det(A)Det(B). Similarly, the map
φ : GL(n,R)→ R∗ given by φ(A) = Det(A) is a homomorphism.

Example 5. Let V and V ′ be vector spaces, a map f : V → V ′ is called a linear map if (1)
f(u + v) = f(u) + f(v) for all u, v ∈ V and (2) f(kv) = kf(v) for every k ∈ R and v ∈ V . The first
condition implies that f is a homomorphism of the additive group (V,+) to (V ′,+).

Example 6. Let G be an arbitrary group, g ∈ G be a given element. Then the map φ : G→ G given
by φ(a) = gag−1 is a homomorphism. Proof: We need to prove the identity φ(ab) = φ(a)φ(b).

Right = φ(a)φ(b) = gag−1gbg−1 = gabg−1 = φ(ab) = Left.

Example 7. The map φ : G → G′ given by φ(x) = e′ (where e′ is the identity element of G′) for all
x ∈ G is a homomorphism, We call it the trivial homomorphism. The map I : G → G given by
I(x) = x is a homomorphism, it is called the identity homomorphism of G.

Example 8. φ : R→ R given by φ(x) = 100x is a homomorphism from the group R to itself, because

φ(a+ b) = φ(a) + φ(b), ←→ 100(a+ b) = 100a+ 100b.
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Example 9. φ(a) = ln(|a|) is a homomorphism from R∗ to R, bacause

φ(ab) = φ(a) + φ(b), ←→ ln(|ab|) = ln(|a|) + ln(|b|).

Example 10. γ : Z → Zn given by γ(m) = r, where r is the remainder of m divided by n, is a
homomorphism.

Definition 13.11. If φ : X → Y is a map. Let A ⊂ X and B ⊂ Y . The image φ[A] is defined as

φ[A] = {φ(a) | a ∈ A}

which is a subset of Y . The inverse image φ−1[B] is defined as

φ−1[B] = {a ∈ A | φ(a) ∈ B},

which is a subset of X.

Theorem 13.12. Let φ : G→ G′ be a homomorphism.Then
(1). φ(e) = e′.
(2). φ(a−1) = φ(a)−1.
(3). If H is a subgroup of G, then φ[H] is a subgroup of G′.
(4). If K ′ is a subgroup of G′, then φ−1[K ′] is a subgroup of G.

Because {e′} is a subgroup G′, so

φ−1[e′] = {a ∈ G | φ(a) = e′}

is a subgroup of G. We call φ−1[e′] the kernel of φ and denote it by Ker(φ). That is, Ker(φ) =
φ−1[e′] = {a ∈ G | φ(a) = e′}.

A map φ : G → G′ is called an isomorphism if (1). φ is a homomorphism. (2). φ is one-to-one
and onto. Examples 2, 6 , 8 above are isomorphisms.

Theorem 13.5. Let G : G → G′ be a homomorphism, and H = Ker(φ). Let b ∈ G′. Then
φ−1(b) = {x ∈ G | φ(x) = b} is either empty or φ−1(b) = aH for any a ∈ φ−1(b).

Corollary 13.18. Let G : G→ G′ be a homomorphism, φ is one-to-one iff Ker(φ) = {e}.

Definition 13.19. A subgroup H of a group G is called a normal subgroup if aH = Ha for all
a ∈ G.

It can be proved that a subgroup H of G is normal iff for every h ∈ H and a ∈ G, aha−1 ∈ H.

Corollary 13.20. Let G : G→ G′ be a homomorphism, then Ker(φ) is a normal subgroup of G.

Exercises

Problem 1. Find a homomorphism from C∗ to U that is onto.

Problem 1. Find a homomorphsim from C∗ to GL(2,R) that is one-to-one (hint: it is related to
Exercise 23 page 27).

Problem 3. Find an isomorphism φ : Zn → Un.

Problem 4. Prove that there is a unique homomorphism φ : S100 → U2 = {1,−1} that is onto.

Problem 5. Find a homomorphism of φ : S3 → S5 that is 1-1.
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Section 14. Factor Groups.

Theorem 14.4, Corollary 14.5. Let H be a normal subgroup of G. Let G/H denote the set of all
left cosets of H. Then the left coset multiplication

(aH)(bH) = (ab)H

is well-defined and G/H is a group under this binary operation.

Proof. To prove the product is well-defined, we need to prove that aH = a′H and bH = b′H imply
that (ab)H = (a′b′)H. Recall that cH = c′H iff c′ = ch for some h ∈ H. Because aH = a′H and
bH = b′H, we have a′ = ah1, b′ = bh2 for some h1, h2 ∈ H. Then a′b′ = ah1bh2 = ab(b−1h1bh2).
Since H is normal, the conjugate b−1h1b ∈ H, so b−1h1bh2 ∈ H. This proves a′b′ = abh3 with
h3 = b−1h1bh2 ∈ H. So (a′b′)H = (ab)H. This proves the well-definess of the coset multiplication.
The proof of the remaining part of the theorem is straightforward.

The group G/H in Theorem 14.9 is called the factor group of G by H, also called the quotient

group of G by H. If G is finite, then G/H is also finite, we have |G/H| = |G|
|H| .

Theorem 14.9. If H is a normal subgroup of group G, then γ : G → G/H given by γ(x) = xH is a
homomorphism with kernel H.

The proof is straightforward.

Theorem 14.11. (The Fundamental Homomorphism Theorem.) Let φ : G → G′ be a ho-
momorphism with Ker(φ) = H. Then (1) Φ[G] is a subgroup of G′. (2). µ : G/H → φ[G] given
by

µ(aH) = φ(a)

is well-defined and is an isomorphism. (3). φ = µ ◦ γ, where γ is as in Theorem 14.9.

This Theorem is often used to identify the factor group G/H with other known groups.

Example. G = C∗, Un = {z ∈ C∗ | zn = 1} is a normal subgroup of C∗. Since C∗ is abelian,
Un is a normal subgroup. We now use Theorem 14.11 to identify the factor group C∗/Un. Consider
φ : C∗ → C∗ given by φ(z) = zn. φ[C∗] = C∗ and Ker(φ) = Un. By Theorem 14.11, C∗/Un is
isomorphic to C∗.

Exercises.

Problem 1. Let SL(2,R) = {A ∈ GL(2,R) | Det (A) = 1}.
(1). Prove that SL(2,R) is a normal subgroup of GL(2,R).
(2). Prove that the factor group GL(2,R)/SL(2,R) is isomorphic to R∗.
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Section 16. Group Action on a Set

The notion of group action provides an abstract model to study symmetries. We give an example
before formally introducing this notion.

Example 1. Consider the group GL(2,R), the group of 2 × 2 invertible matrices with matrix mul-
tiplication. Every element g in GL(2,R) is a linear transformation of R2: g transforms every vector
v ∈ R2 to a vector gv ∈ R2. So we have a map GL(2,R) × R2 → R2, which sends every pair
(g, v) ∈ GL(2,R)× R2 to gv ∈ R2. The map satisfies the properties that

ev = v, (g1g2)v = g1(g2v) (1)

where e is the identity element of GL(2,R), i.e., e =

(
1 0
0 1

)
. This is an example of the group GL(2,R)

action on the set R2. The identities in (1) are well-known facts about matrix multiplication.

Definition 16.1 Let X be a set and G a group. An action of G on X is a map ∗ : G×X (we write
the image of (g, x) as g ∗ x or often as gx) such that the following two identities are satisfied:

(Axiom 1). e ∗ x = x for all x ∈ X. (2)

(Axiom 2). (g1g2) ∗ x = g1 ∗ (g2 ∗ x) for all g1, g2 ∈ G, x ∈ X (3)

We also call G acts on X or X is a G-set.

In Example 1 above, G = GL(2,R), X = R2, g ∗ x is just the matrix multiplication, i.e., the
multiplication of 2× 2 matrix g with 2× 1 matrix x. The result g ∗ x = gx is a 2× 1 matrix, a vector
in R2.

Example 2. Example 1 can be generalized to the case G = GL(n,R), where n is a given positive
integer, X = Rn (vector space of column vectors with n components). The action of G = GL(n,R) on
X = Rn is given by the map GL(n,R)× Rn → Rn, which sends every pair (g, v) ∈ GL(n,R)× Rn to
gv ∈ Rn.

Example 3. The permutation group S3 acts on X = {1, 2, 3}. g ∈ S3, i ∈ X, the action is σ∗ i = σ(i).
For example,

σ = (132), σ ∗ 1 = 3, σ ∗ 2 = 1, σ ∗ 3 = 2.

Example 4. More generally, for a given positive integer n, Sn acts on X = {1, 2, . . . , n}. σ ∗ i = σ(i).
In Example 3 and 4, Axiom 1 follows from the definition of e ∈ Sn (e leaves every element fixed);
Axiom 2 follows from the definition of the operation of Sn.

Example 5. This is a more abstract example. Let G be a group, H be a subgroup, let G/H be the
set of all left cosets of H, then G acts on G/H by

g ∗ (aH) = (ga)H.

Example 6. You may ignore this example for the time being. Let G be the symmetry group of some
geometric figure (for example, a regular triangle) let X be a set associated to the geometric figure (for
example, X is the set of vertices of the triangle). Then G acts on X, because g ∈ G, as a motion
preserving the shape of the geometric figure, transforms x ∈ X, to gx (outcome of x after applying g
to x).

Example 7. G = S5, X = {(i, j) | 1 ≤ i, j ≤ 5}. G acts on X by

σ(i, j) = (σ(i), σ(j)).

For example, σ = (15423) (cycle of length 5),

σ(5, 4) = (4, 2),
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as σ transforms 5 to 4, 4 to 2.

Theorem 16.12. Let G act on X, for x ∈ X, put

Gx = {g ∈ G | gx = x}.

Then Gx is a subgroup of G (Gx is called the isotropy subgroup of x).

Sketch of Proof. Step 1. Prove Gx is closed. Step 2. Prove e ∈ Gx (this is obvious), Step 3. Prove
σ ∈ Gx implies σ−1 ∈ Gx. �

Example 8. In Example 3 above, the isotropy subgroup of 2 is

G2 = {e, (13)},

because e and (13) are the only elements that leave 2 fixed, the other 4 elements (23), (12), (123), (132)
move 2 to 3, 1, 3, 1 respectively.

Definition. Let G act on X, x ∈ X, the orbit containing x (also called the orbit of x) is the subset
of X, denoted by Gx, given by

Gx = {gx | g ∈ G}.

Example 9. In Example 3 above, the orbit containing 2 is {1, 2, 3}, because every element in {1, 2, 3}
can be obtained by applying some permutation to 2, (12)2 = 1, (23)2 = 3, e2 = 2. The orbits of 1 and
3 are also {1, 2, 3}. There are only one orbit for this case.

Example 10. In Example 3 above, the orbit containing 2 is {1, 2, 3}, because every element in {1, 2, 3}
can be obtained by applying some permutation to 2, (12)2 = 1, (23)2 = 3, e2 = 2. X. The orbits of 1
and 3 are also {1, 2, 3}. There are only one orbit for this case.

Theorem 16.16. Let G act on X, suppose G is finite, then |Gx| = |G|
|Gx| . In particular |Gx| is a divisor

of |G|.

Sketch of Proof. We define the map φ : G/Gx → Gx by φ(gGx) = gx. First we prove this map is
well-defined (because the way to write a left coset gGx is not unique). Then we prove φ is one-to-one
and onto. SO G/Gx and Gx have the same cardinality, |G/Gx| = |Gx|. By the result in Section 10,

we have |G/Gx| = |G|
|Gx| .

Exercises.

Problem 1. Find the order of the isotropy subgroups of (1, 2) and (1, 1) in Example 7.

Problem 2. In Example 7, how many elements are in the orbit of (1, 2) and (1, 1). How many orbits
are there?

Problem 3. Prove that the following is a G-action on G:

g ∗ x = gxg−1.

that is, to prove Axiom 1 and Axiom 2,

e ∗ x = x, (g1g2) ∗ x = g1 ∗ (g2 ∗ x).
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Section 18. Rings and Fields

The algebraic structure with two binary operations that is studied in this section is called a ring. All
the well-known number systems such as integers, rational numbers, real numbers, complex numbers
are examples of rings. Examples of rings also appear in linear algebra and analysis.

Definition 18.1. A ring (R,+, ·) (also denoted by R) is a set together with two binary operations +
and ·, such that the following axioms are satisfied:
(Axiom 1). (R,+) is an abelian group.
(Axiom 2). Multiplication · is associative: (a · b) · c = a · (b · c).
(Axiom 3). Distributive laws: for all a, b, c ∈ R,

a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a.

We often denote a · b by ab. The identity element of + is denoted by 0. The additive inverse of a
is denoted by −a, i.e., a+ (−a) = 0.

Example 1. The set of integers Z is a ring with the usual addition and multiplication. Similarly
Q,R,C (the set of rational numbers, real numbers, complex numbers) are rings with the usual addition
and multiplication.

Example 2. The set C[0, 1] of continuous functions on [0, 1] is a ring with the (function) addition
and multiplication. Notice that C[0, 1] is closed under the addition because the sum (product) of two
continuous functions is a continuous function (a well-known result in calculus). Similarly for arbitrary
domain D in Rn, the set of continuous functions on D is a ring.

Example 3. The set Z3 = {0, 1, 2}, the modulo 3 integer system, is a ring. The operation + is studied
in Section 2. The multiplication · is the modulo 3 multiplication: 0 · a = a · 0 = 0 for all a ∈ Z3;
1 · a = a · 1 = a for all a ∈ Z3; 2 · 2 = 1, because the multiplication of any two numbers in 2 + 3Z is in
1 + 3Z.

Z4 = {0, 1, 2, 3}, the multiplication is

0 · 0 = 0, 0 · 1 = 0, 0 · 2 = 0, 0 · 3 = 0, 1 · 1 = 1, 1 · 2 = 2, 1 · 3 = 3,

2 · 2 = 4 = 0, 2 · 3 = 6 = 2, 3 · 3 = 9 = 1.

The rule can be summarized as follows: for i, j ∈ Z4, choose an element a in i + 4Z and an element
b ∈ j + 4Z, the multiplication ab is in k + 4Z, we define i · j = k. This k is independent of the choices
of a and b.

For a given positive integer n, Zn = {0, 1, . . . , n − 1} is a ring under the modulo n addition and
multiplication. 0 is the identity element for + and 1 is the identity element for ·. i · j = k has the
following meaning: any element in i+nZ multiplying any element in j+nZ gives an element in k+nZ.

Example 4. Let n be a positive integer, Mn(R) be the set of all n× n matrices with all entries in R.
Then Mn(R) is a ring under the matrix addition and multiplication.

Example 5. Let R1, . . . , Rn be rings, then the direct product R1 ×R2 × · · · ×Rn is a ring under the
following pointwise addition and multiplication

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn), (a1, . . . , an) · (b1, . . . , bn) = (a1 · b1, . . . , an · bn).

A ring R is called a commutative ring if the multiplication is commutative, i.e., a · b = b · a for
all a, b ∈ R. Notice that by Axiom 1 in the definition of a ring, + is always commutative. The rings in
Examples 1, 2, 3, 5 are all commutative rings. In Example 4, for n ≥ 2, M2(R) is NOT a commutative
ring, as the matrix multiplication is not commutative.

If the multiplication for a ring R has an identity element (then it is unique), we call the identity
element the unity of R. And we call R is a ring with unity. All the rings in Example 1, 2, 3, 4 are
rings with unity.
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When R is a ring with unity 1, a ∈ R is called a unit if a is multiplicatively invertible, that is,
there exists a′ ∈ R such that aa′ = a′a = 1.

A ring R is called a field if the following three conditions are satisfied: (1) R is a commutative
ring, (2) R has unity 1 and 1 6= 0, (3) every nonzero element is a unit.

Q,R and C are fields. For ring Z, (1) (2) are satisfied, but not (3), the units of Z are 1 and −1, so
Z is NOT a field.

A subset S of a ring R is called a subring if S is closed under the addition and multiplication, and
S is a ring under the induced addition and multiplication. To prove S is a subring of R, Step 1. we
prove S is nonempty and it is closed under + and ·. Step 2. we prove a ∈ S implies that −a ∈ S.

Example. In any pair of the chain Z ⊂ Q ⊂ R ⊂ C, the smaller ring is a subring of the bigger ring.
For example. Q is a subring of C.

Theorem 18.8. If R is a ring with additive identity 0, then for any a, b ∈ R we have
(1) a0 = 0a = 0.
(2) a(−b) = (−a)b = −(ab).
(3) (−a)(−b) = ab

All these identities are well-known for Example 1,2,3,4. The proof should use only the axioms in
the definition of a ring. We give here the proof of (1). Since 0 + 0 = 0, multiply a to both sides, we get

a(0 + 0) = a0. (4)

By Axiom 2, a(0 + 0) = a0 + a0, so (1) implies that

a0 + a0 = a0 = a0 + 0 (5)

Since (R,+) is an abelian group (Axiom 1), we have cancellation law, cancelling a0 in the left side of
(2) with a0 in the right side of (2), we get a0 = 0.

Definition 18.9. For rings R and R′, a map φ : R→ R′ is called a ring homomorphism if

φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b)

for all a, b ∈ R.

Notice that a ring homomorphism is also an abelian group homomorphism. The Kernel of a ring
homomorphism φ is defined as

Ker(φ) = {a ∈ R | φ(a) = 0}.

This is the same as the kernel of group homomorphism if we consider φ as a group homomorphism.

Exercises.

Problem 1. If p is a prime, prove that Zp is a field.

Problem 2. Determine if each of the following maps is a ring homomorphism.
(1). φ : C→ C given by φ(a+ bi) = a− bi.
(2). φ : C→ C given by φ(x) = −x.
(3). φ : Z× Z→ Z given by φ((a, b)) = b.
(4). Let g be given 2× 2 invertible matrix, φ : M2(R)→M2(R) given by φ(X) = gXg−1.

(5). φ : R→M2(R) given by φ(a) =

(
a 0
0 a

)
.

Problem 3. Determine if each of the following set is a subring of M2(R).
(1). The set of all 2× 2 upper triangular matrices.
(2). The set of all 2× 2 diagonal matrices.
(3). The set of all 2× 2 diagonal matrices with non-negative diagonal entries.
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Problem 4. Find all the units of the ring Z6.

Problem 5. Find a surjective ring homomorphism of Z onto Z5 and finds its kernel.

Section 19. Integral Domains

It is well-known that the product of two non-zero real numbers (or complex numbers) is non-zero, that
is, a, b ∈ R (C), a 6= 0, b 6= 0 imply ab 6= 0. But the same is NOT true for general rings. For example,
Z6 = {0, 1, 2, 3, 4, 5}, 3 6= 0, 4 6= 0, but the product 3 · 4 = 0. We say that a and b are 0 divisors.

Definition. If a and b are two non-zero elements of a ring R such that ab = 0, then a and b are
divisors of zeros (or 0 divisors).

This concept is used mostly for commutative rings.

Example 1. In Z6 = {0, 1, 2, 3, 4, 5}, 2, 3, 4 are the all 0-divisors.

Definition . A ring R is called an integral domain if the following conditions are satisfied: (1). R
is commutative; (2). R has a unity 1 and 1 6= 0; (3). R has no zero divisors.

Example 2. A field F is an integral domain. Proof. if ab = 0, a 6= 0, since F is a field, a has an
inverse a−1. Multiple the both sides of the equation ab = 0 by a−1, we have a−1ab = a−10, 1 · b = 0,
b = 0. This proves F has no zero divisors. So the condition (3) is satisfied. Conditions (1) (2) are also
satisfied because of the definition of a field.

In particular, Q,R,C are integral domains, because they are fields. Z is an integral domain, but
not a field.

Example 3. C[0, 1], the ring of continuous functions on [0, 1] is NOT an integral domain. Conditions
(1) (2) are satisfied, (3) is NOT satisfied, we can find two non-zero functions f, g such that f(x) = 0
for x ∈ [0, 12 ], and g(x) = 0 for x ∈ [ 12 , 1]. Then f(x)g(x) = 0 for all x ∈ [0, 1]. So f(x) and g(x) are 0
divisors.

Theorem 19.3. In the ring Zn, the 0 divisors are precisely those nonzero elements that are not
relatively prime to n.

Example 4. In ring Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Among the nine nonzero elements, 2, 4, 5, 8 are
not relatively prime to 10, so they are all the 0-divisors.

Corollary 19.4. If p is a prime, then Zp has no 0 divisors.

Example 5. Since 5 is a prime, Z5 has no zero divisors, so Z5 is an integral domain. We will see that
Z5 is a field.

Theorem 19.9. Every field is an integral domain.

This theorem is already proved in Example 2.

Theorem 19.11. Every finite integral domain is a field.

Proof. Let D be an integral domain, we need to prove every nonzero element a ∈ D is invertible.
Consider the list a, a2, a3, . . . ; which has infinitely many elements but D is finite, so there exist different
positive integers m and n such that

am = an (6)

We may assume m > n. The equation (1) implies that an(am−n − 1) = 0. Since D has no 0 divisor,
an 6= 0, this implies am−n − 1 = 0. So am−n = 1, aam−n−1 = 1. So am−n−1 is the inverse of a.
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If the finiteness condition in the theorem is dropped, the result is not correct. Example. Z is an
integral domain, but it is not a field.

Corollary 19.12. If p is a prime, then Zp is a field.

Summary of the main results in this section.
(1). Every field is an integral domain.
(2). Every finite integral domain is a field.
(3). If p is a prime, then Zp is an integral domain.
(4). If p is a prime, then Zp is a field.

Exercises.

Problem 1. Which of the following rings are integral domains, which of them are fields?
Z, Z21, Z19, Z50, Q, R, C

Problem 2. Find all the 0 divisors of the ring Z9.

Problem 3. Let R be a finite commutative ring with unity 1, 1 6= 0. If a ∈ F is not a 0 divisor, prove
that a is a unit.
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Section 20. Fermat’s and Euler’s Theorem

In this section, we apply the results in group theory and ring theory to prove two theorems in
elementary number theory, Fermat’s and Euler’s Theorem.

Theorem 20.1 (Little Theorem of Fermat) If p is a prime, a ∈ Z is not divisible by p, then
ap−1 − 1 is a multiple of p.

Example . p = 5, a = 3, ap−1 − 1 = 34 − 1 = 80 is a multiple of 5.

It is easy to see that Theorem 20.1 is equivalent to the following:

Theorem 20.1’ (An equivalent formulation of Little Theorem of Fermat) If p is a prime,
a ∈ Z, then ap − a is a multiple of p.

The equivalence follows from the identity ap − a = a(ap−1 − 1).

An elementary proof of Theorem 20.1’. It is not hard to see that if the theorem holds for positive
integers a, then it holds for all integers a. It suffices to prove it for a positive integers. We use
induction on a. If a = 1, 1p − 1 = 0 = 0 · p is a multiple of p. Assume a = n, np − n is a multiple of p
(induction assumption), then for a = n+ 1,

(n+ 1)p − (n+ 1) =

p∑
i=0

(
p

i

)
ni − (n+ 1) = (np − n) +

p−1∑
i=1

(
p

i

)
ni. (7)

np − n is a multiple of p by induction assumption. For 1 ≤ i ≤ p− 1,(
p

i

)
=

p!

i!(p− i)!

is a multiple of p, because it is an integer by its combinatorial meaning, and p is not a factor of the
denominator. Therefore the right hand side is a multiple of p. This completes the proof.

Now we give a proof of Theorem 20.1 using group theory. First we notice that for arbitrary field
F , F ∗, the set of all non-zero elements in F , is a group under the multiplication. (The multiplicative
groups Q∗, R∗ and C∗ have already been considered before.) Consider the ring Zp. By Corollary 19.12,
Zp is a field. The set Gp of non-zero elements in Zp is a group under multiplication. Since |Gp| = p−1,
by the corollary of Lagrangian Theorem,

ap−1 = 1 for all a ∈ Gp.

This implies Theorem 20.1.

The group theory proof can be generalized to prove Euler’s Theorem. Consider the ring Zn. We
have the following theorem

Theorem 20.6 Let Gn be the set of all nonzero elements in Zn that are not zero divisors. The Gn is
a group under the modulo n multiplication.

Sketch of Proof. By the definition of Gn, Gn consists of elements a, 1 ≤ a ≤ n − 1 such that a is
relatively prime to n. If a, b ∈ Gn, so a, b are relatively prime to n, so the remainder of ab divided
by n is again relatively prime to n. This proves Gn is closed under the modulo n multiplication. It
is obvious that 1 ∈ Gn. It remains to prove every a ∈ Gn has a multiplicative inverse in Gn. To this
end, we consider the list a, a2, a3, . . . . Since this list is infinite, but Gn is finite, we have am = ak for
some m > k. This implies that am−k = 1, so a has inverse am−k−1.

We denote the order of Gn by φ(n). By definition of Gn, φ(n) is the number of integers a,
1 ≤ a ≤ n− 1, that is relatively prime to n. φ(n) is called Euler phi-function.

Example. Compute φ(10). Among the nine numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, Four of them 1, 3, 7, 9 are
relatively prime to 10, so φ(10) = 4.
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Theorem 20.8 (Euler’s Theorem). If a is an integer relatively prime to n, then aφ(n) − 1 is a
multiple of n.

Proof. Because a is an integer relatively prime to n, we can consider a as an element in Gn. So we
have a|Gn| = 1, that is, aφ(n) = 1 on Gn. This means aφ(n) − 1 is a multiple of n.

Example. 7 is relatively prime to 10, so 7φ(10) − 1 is a multiple of 10, that is, 74 − 1 is a multiple of
10.

The following rules can be used to compute Euler phi-function.

(1) If m and n are relatively prime, so the

φ(mn) = φ(m)φ(n).

(2). If p is a prime, then
φ(pk) = pk − pk−1.

Example. Find φ(1000) and prove that the last three digit of 7800 − 1 are 0.
1000 = 23 · 53. Since 23 and 53 are relatively prime, we have

φ(1000) = φ(23 · 53) = φ(23)φ(53) = (23 − 22)(53 − 52) = 400.

Since 7 is relatively prime to 1000, by Euler’s Theorem, 7400 − 1 is a multiple of 1000. So 7800 − 1 =
(7400 − 1)(7400 + 1) is a multiple of 1000, so its last three digits are 0.

Exercises

Problem 1. List all the elements in G6 and G9.

Problem 2. Compute φ(99). Prove that 5180 − 1 is a multiple of 99.

Problem 3. Let F be a field, prove that F ∗ = {a ∈ F | a 6= 0} is a group under ·.

11



Section 21. The Field of Quotients of an Integral Domain

The main result of this section is Theorem 21.5. The proof of this theorem (i.e. a construction
of a field of quotients F for an integral domain D) is given on page 191-194 (steps 1,2,3,4). The
uniqueness of the field of quotients is given in Theorem 21.6.

An example of Theorem 21.5 is D = Z, the ring of integers. From Z, one can construct the field
Q of rational numbers. The construction of Q uses fractions n

m , m,n ∈ Z, m 6= 0. Students learn
this construction in primary school, which can be generalized to arbitrary integral integral domain as
follows.

Let D be an integral domain, we consider the set of pairs (a, b) with a, b ∈ D, b 6= 0. One thinks
a pair (a, b) as a

b . The two pairs (a, b) and (a′, b′) are considered equal if ab′ = a′b. Let F be the set
of all such pairs (after the above identification). We define addition + and multiplication · on F as
follows:

(a, b) + (c, d) = (ad+ bc, bd), (a, b) · (c, d) = (ac, bd).

One checks + and · are well-defined.

Theorem 21.5. F above is a field, it contains D as a subring.
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Section 26. Homomorphisms and Factor Rings

Definition 26.1. A map φ of a ring R into a ring R′ is a (ring) homomorphism if

φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b)

for all a, b ∈ R.

Example 1. Let R1, . . . , Rn be rings. For each i, the map πi : R1 × · · · × Rn → Ri defined by
πi(a1, . . . , an) = ai is a homomorphism. It is called the projection onto the i-component.

Example 2. Let φ : C→M(2,R) be the map given by

φ(a+ bi) =

(
a b
−b a

)
.

φ is a ring homomorphism. It is easy to check φ(z+w) = φ(z) +φ(w), but it is more involved to check
φ(zw) = φ(z)φ(w) for z, w ∈ C.

Example 3. Let C[0, 1] be the ring of continuous functions on [0, 1]. The map φ : C[0, 1]→ R given
by φ(f) = f( 1

2 ) is a ring homomorphism, it is called the evaluation homomorphism at 1
2 . In general,

let D ⊂ Rn be a domain, C(D) the ring of continuous functions on D. For a given point p ∈ D, the
evaluation map φ : C(D)→ R, φ(f) = f(p) is a ring homomorphism.

Theorem 26.3. (Analog of Theorem 13.12). Let φ : R→ R′ be a ring homomorphism. Then
(1) φ(0) = 0.
(2) φ(−a) = −φ(a).
(3) If S ⊂ R is a subring, then φ[S] is a subring of R′.
(4) If S′ ⊂ R′ is a subring, then φ−1[S′] is a subring of R.

Definition 26.4. Let φ : R → R′ be a ring homomorphism, the kernel of φ, denoted by Ker(φ), is
given by

Ker(φ) = φ−1(0) = {a ∈ R | φ(a) = 0}.

It is clear that a ring homomorphism φ : R→ R′ is a group homomorphism of (R,+) into (R′,+).
The kernel of φ is the same as the kernel for the additive group homomorphism.

Definition 26.10. Additive subgroup N ⊂ R is called an ideal of R if it satisfies the property that
n ∈ N and a ∈ R imply that an ∈ N and na ∈ N .

If φ : R→ R′ is a ring homomorphism, then Ker(φ) is an ideal of R.

Proof. Because φ is an additive group homomorphism, so Ker(φ) is an additive subgroup of R. For
n ∈ Ker(φ) and a ∈ R, φ(an) = φ(a)φ(n) = φ(a)0 = 0, this proves an ∈ Ker(φ). Similarly, φ(na) =
φ(n)φ(a) = 0φ(a) = 0, so na ∈ Ker(φ).

Theorem 26.9, Corollary 26.14. Let N be an ideal of ring R, let R/N be the set of cosets a+N .
(1) Then the binary operations + and · on R/N defined by

(a+N) + (b+N) = (a+ b) +N, (a+N) · (b+N) = ab+N

are well-defined.
(2) (R/N,+, ·) is a ring.

Proof. The well-definess of + on R/N is included in Section 14 (Theorem 14.4 and Corollary 14.5). To
prove · is well-defined, suppose a+N = a′+N and b+N = b′+N , we need to prove ab+N = a′b′+N . We
have a′ = a+n1 and b′ = b+n2 for some n1, n2 ∈ N . So a′b′ = (a+n1)(b+n2) = ab+an2+n1b+n1n2.
Since N is an ideal, n1, n2 ∈ N , we have an2 ∈ N,n1b ∈ N,n1n2 ∈ N , so an2 + n1b+ n1n2 ∈ N . This
proves ab+N = a′b′ +N . The proof of Part (2) is straightforward.

The ring R/N is called the factor ring of R by N .
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Example. 3Z is an ideal of Z. The set Z/3Z has three elements:

Z/3Z = {0 + 3Z, 1 + 3Z, 2 + 3Z}

The factor ring Z/3Z is just Z3. When we introduced Z3 earlier, we used the symbols 0, 1, 2 to denote
the elements rather than 0 + 3Z, 1 + 3Z, 2 + 3Z. In general for any positive integer n, nZ is an ideal of
Z. The factor ring Z/nZ is Zn.

Theorem 26.16. (Analog of Theorem 14.9) Let N be an ideal of a ring R. Then γ : R→ R/N given
by γ(a) = a+N is a ring homomorphism with kernel N .

Theorem 26.17. (Fundamental Homomorphism Theorem for Rings, Analog of Theorem 14.11)
Let φ : R→ R′ be a ring homomorphism with kernel N , Then
(1) φ[R] is a subring of R′.
(2) The map µ : R/N → φ[R] given by µ(a+N) = φ(a) is well-defined and is a ring isomorphism.
(3) φ = µ ◦ γ.

(1) is included in Theorem 26.3 (3). For (2), to prove the well-definess of µ, suppose a+N = a′ +N ,
then a′ = a+ n for some n ∈ N . So

µ(a′ +N) = φ(a′) = φ(a+ n) = φ(a) + φ(n) = φ(a) + 0 = φ(a+N).

It is straightforward to prove µ is a ring homomorphism. And it is easy to see that φ is onto. It
remains to prove µ is 1-1. By Corollary 13.18, it suffices to prove Ker(φ) = {0}. If a + N ∈ Ker(φ),
then µ(a+N) = φ(a) = 0, so a ∈ N , so a+N = 0 +N .

Exercises.

Problem 1. Find all the ideals of Z.

Problem 2. Let F be a field, prove that F has only two ideals {0} and F itself.
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