Homework No. 3 for Math 3121

Due Time: Oct 17, 6pm.
Problem 1. Let $\sigma \in S_{8}$ be the element

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 3 & 2 & 1 & 5 & 8 & 7
\end{array}\right) .
$$

(1) Compute σ^{2}. (2). Decompose σ as a product of disjoint cycles. (3). Compute the order of σ. (4). Compute σ^{-1}.

Problem 2. Let $\sigma \in S_{8}$ be of the form

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 6 & 3 & 2 & a & b & 1 & 7
\end{array}\right) .
$$

Suppose σ is an odd permutation,
(1). Find a and b. (2). Decompose σ as a product of disjoint cycles.
(3). Compute the order of σ. (4). Decompose σ^{-1} as a product of disjoint cycles. (5). Comupte σ^{2019}.

Problem 3. Give an example of a subgroup in S_{4} that has order 6 .

Problem 4. Let σ and τ denote the transpositions (12) and (23) in S_{8}. Prove that $\sigma \tau \sigma=\tau \sigma \tau$.

Problem 5. Let G be an abelian group, prove that $H=\left\{a \in G \mid a^{3}=e\right\}$ is a subgroup of G.

