Solution to Homework 3

Problem 1. Let $\sigma \in S_8$ be the element

(1) Compute σ^2 .

(2) Decompose σ as a product of disjoint cycles.

$$\sigma = (1 \ 6 \ 5)(2 \ 4)(7 \ 8)$$

(3)Compute the order of σ .

We see that the disjoint cycle permute each other, and $(1\ 6\ 5)$ has order 3, while the 2-cycles has order 2. So the order of $\sigma = \text{lcm}(2,3) = 6$.

(4). Compute σ^{-1} .

or

$$\sigma^{-1} = (1\ 5\ 6)(2\ 4)(7\ 8)$$

Problem 2. Let $\sigma \in S_8$ be of the form

Suppose σ is an **odd** permutation,

(1). Find a and b.

Since σ is a bijection, a and b could be 4 or 5 only. If a = 5 and b = 4, then

 $\sigma = (1 \ 8 \ 7)(2 \ 6 \ 4) = (1 \ 7)(1 \ 8)(2 \ 4)(2 \ 6)$, which is an even permutation. If a = 4 and b = 5, then $\sigma = (1 \ 8 \ 7)(2 \ 6 \ 5 \ 4) = (1 \ 7)(1 \ 8)(2 \ 4)(2 \ 5)(2 \ 6)$, which is an odd permutation. So a = 4 and b = 5 is the correct answer.

(2). Decompose σ as a product of disjoint cycles.

$$\sigma = (1 \ 8 \ 7)(2 \ 6 \ 5 \ 4)$$

(3). Compute the order of σ .

Note that (1 8 7) has order 3 and (2 6 5 4) has order 4. Hence order of $\sigma = \text{lcm}(3, 4) = 12$

(4). Decompose σ^{-1} as a product of disjoint cycles.

 σ^{-1} is just taking the inverse of each cycle in the product of disjoint cycle of σ . Now $(1 \ 8 \ 7)^{-1} = (1 \ 7 \ 8)$ and $(2 \ 6 \ 5 \ 4)^{-1} = (2 \ 4 \ 5 \ 6)$. Hence

$$\sigma^{-1} = (1\ 7\ 8)(2\ 4\ 5\ 6)$$

(5). Comupte σ^{2019} .

We note that σ has order 12, and $2019 = 12 \times 168 + 3$. Hence

$$\sigma^{2019} = (\sigma^{12})^{168}\sigma^3 = \sigma^3 = ((1\ 8\ 7)(2\ 6\ 5\ 4))^3 = (1\ 8\ 7)^3(2\ 6\ 5\ 4)^3 = (2\ 4\ 5\ 6)^3$$

(Note the step $((1\ 8\ 7)(2\ 6\ 5\ 4))^3 = (1\ 8\ 7)^3(2\ 6\ 5\ 4)^3$ is possible since disjoint cycles commute each other!)

Problem 3. Give an example of a subgroup in S_4 that has order 6.

we can naturally consider S_3 as a subset of S_4 , by considering an element in S_4 just permuting the $\{1, 2, 3\}$ in the set $\{1, 2, 3, 4\}$, i.e. leaving 4 fixed. Then this subset itself is a group, and has order 3! = 6, as a subset of S_4 and compatible with the group operation(composition of maps) in S_4 . Therefore this S_3 -like subset is the subgroup we are searching. (or write the subset as $\{id, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\} \subset S_4$). (Note: Later on you will see the only order 6 groups are \mathbb{Z}_6 -like or S_3 -like. by noticing no element in S_4 has order 6 as in \mathbb{Z}_6 , you look for S_3 -like subgroups.)

Problem 4. Let σ and τ denote the transpositions (12) and (23) in S_8 . Prove that $\sigma \tau \sigma = \tau \sigma \tau$.

Proof. We note that $\sigma^2 = id = \tau^2$ and $\sigma\tau = (2\ 3\ 1)$, which has order 3. Hence we have

$$\sigma\tau\sigma\tau\sigma\tau = (\sigma\tau)^3 = 1$$

Multiplying $\tau \sigma \tau$ on the right, and note that $\sigma^2 = id = \tau^2$, we get

 $\sigma\tau\sigma=\tau\sigma\tau$

as required.

Problem 5. Let G be an abelian group, prove that $H = \{a \in G \mid a^3 = e\}$ is a subgroup of G.

Proof. We use the criterion proved in tutorial. Let $x, y \in H$. By definition, $x^3 = y^3 = e$.

Note $y^3 = e$ implies $(y^{-1})^3 = e$, by multiplying y^{-1} three times from the left or right.

So $(xy^{-1})^3 = xy^{-1}xy^{-1}xy^{-1} = xxxy^{-1}y^{-1}y^{-1} = x^3(y^{-1})^3 = ee = e$ Hence $xy^{-1} \in H$, and hence H is a subgroup of G.