## Solution to Homework 3

Problem 1. Let $\sigma \in S_{8}$ be the element

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 4 & 3 & 2 & 1 & 5 & 8 & 7
\end{array}\right)
$$

(1) Compute $\sigma^{2}$.

$$
\sigma^{2}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 2 & 3 & 4 & 6 & 1 & 7 & 8
\end{array}\right) .
$$

(2) Decompose $\sigma$ as a product of disjoint cycles.

$$
\sigma=(165)(24)(78)
$$

(3)Compute the order of $\sigma$.

We see that the disjoint cycle permute each other, and (165) has order 3, while the 2 -cycles has order 2 . So the order of $\sigma=\operatorname{lcm}(2,3)=6$.
(4). Compute $\sigma^{-1}$.

$$
\sigma^{-1}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 4 & 3 & 2 & 6 & 1 & 8 & 7
\end{array}\right) .
$$

or

$$
\sigma^{-1}=\left(\begin{array}{lll}
1 & 5 & 6
\end{array}\right)(24)(78)
$$

Problem 2. Let $\sigma \in S_{8}$ be of the form

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 6 & 3 & 2 & a & b & 1 & 7
\end{array}\right) .
$$

Suppose $\sigma$ is an odd permutation,
(1). Find $a$ and $b$.

Since $\sigma$ is a bijection, $a$ and $b$ could be 4 or 5 only. If $a=5$ and $b=4$, then
$\sigma=(187)(264)=(17)(18)(24)(26)$, which is an even permutation. If $a=4$ and $b=5$, then $\sigma=(187)(2654)=(17)(18)(24)(25)(26)$, which is an odd permutation. So $a=4$ and $b=5$ is the correct answer.
(2). Decompose $\sigma$ as a product of disjoint cycles.

$$
\sigma=(187)(2654)
$$

(3). Compute the order of $\sigma$.

Note that (187) has order 3 and (2654) has order 4. Hence order of $\sigma=\operatorname{lcm}(3,4)=12$
(4). Decompose $\sigma^{-1}$ as a product of disjoint cycles.
$\sigma^{-1}$ is just taking the inverse of each cycle in the product of disjoint cycle of $\sigma$. Now $(187)^{-1}=(178)$ and $(2654)^{-1}=\left(\begin{array}{ll}2 & 4 \\ 5\end{array}\right)$. Hence

$$
\sigma^{-1}=(178)(2456)
$$

(5). Comupte $\sigma^{2019}$.

We note that $\sigma$ has order 12 , and $2019=12 \times 168+3$. Hence
$\sigma^{2019}=\left(\sigma^{12}\right)^{168} \sigma^{3}=\sigma^{3}=((187)(2654))^{3}=\left(\begin{array}{lll}1 & 8 & 7\end{array}\right)^{3}\left(\begin{array}{llll}2 & 6 & 5\end{array}\right)^{3}=\left(\begin{array}{lll}2 & 4 & 5\end{array}\right)$
(Note the step $((187)(2654))^{3}=(187)^{3}(2654)^{3}$ is possible since disjoint cycles commute each other!)

Problem 3. Give an example of a subgroup in $S_{4}$ that has order 6 . we can naturally consider $S_{3}$ as a subset of $S_{4}$, by considering an element in $S_{4}$ just permuting the $\{1,2,3\}$ in the set $\{1,2,3,4\}$, i.e. leaving 4 fixed. Then this subset itself is a group, and has order $3!=6$, as a subset of $S_{4}$ and compatible with the group operation(composition of maps) in $S_{4}$. Therefore this $S_{3}$-like subset is the subgroup we are searching.
(or write the subset as $\left.\left\{\mathrm{id},\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\} \subset S_{4}\right)$.
(Note: Later on you will see the only order 6 groups are $\mathbb{Z}_{6}$-like or $S_{3}$-like. by noticing no element in $S_{4}$ has order 6 as in $\mathbb{Z}_{6}$, you look for $S_{3}$-like subgroups.)

Problem 4. Let $\sigma$ and $\tau$ denote the transpositions (12) and (23) in $S_{8}$. Prove that $\sigma \tau \sigma=\tau \sigma \tau$.

Proof. We note that $\sigma^{2}=\mathrm{id}=\tau^{2}$ and $\sigma \tau=\left(\begin{array}{ll}2 & 3\end{array}\right)$, which has order 3. Hence we have

$$
\sigma \tau \sigma \tau \sigma \tau=(\sigma \tau)^{3}=1
$$

Multiplying $\tau \sigma \tau$ on the right, and note that $\sigma^{2}=\mathrm{id}=\tau^{2}$, we get

$$
\sigma \tau \sigma=\tau \sigma \tau
$$

as required.

Problem 5. Let $G$ be an abelian group, prove that $H=\left\{a \in G \mid a^{3}=e\right\}$ is a subgroup of $G$.

Proof. We use the criterion proved in tutorial. Let $x, y \in H$. By definition, $x^{3}=y^{3}=e$.
Note $y^{3}=e$ implies $\left(y^{-1}\right)^{3}=e$, by multiplying $y^{-1}$ three times from the left or right.
So $\left(x y^{-1}\right)^{3}=x y^{-1} x y^{-1} x y^{-1}=x x x y^{-1} y^{-1} y^{-1}=x^{3}\left(y^{-1}\right)^{3}=e e=e$
Hence $x y^{-1} \in H$, and hence $H$ is a subgroup of $G$.

