Solution for Homework No. 4

Problem 1. Determine if the following maps are homomorphisms of groups
(No reasons needed).
(1). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=2019 a$

No. $\Phi(a b)=2019 a b$ but $\Phi(a) \Phi(b)=(2019 a)(2019 b)=2019^{2} a b$
(2). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=a^{2019}$

Yes.
(3). $\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad \Phi(a)=2019 a$

Yes.
(4). $\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad \Phi(a)=a^{2}$

No. $\Phi(a+b)=(a+b)^{2}=a^{2}+2 a b+b^{2}$ but $\Phi(a)+\Phi(b)=a^{2}+b^{2}$
(5). $\Phi: G L(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}, \quad \Phi(A)=\operatorname{Det}(A)^{10}$.

Yes. Det is multiplicative
(6). $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=10^{a}$.

Yes.
(7). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}, \quad \Phi(a)=10^{a}$.

No. $\Phi(a b)=10^{a b}$ but $\Phi(a)+\Phi(b)=10^{a}+10^{b}$
(8). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}, \quad \Phi(a)=\log _{10}\left(a^{2}\right)$.

Yes.
(9). $\Phi: S_{3} \rightarrow S_{4}$,

$$
\Phi(\sigma)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
i & j & k & 4
\end{array}\right), \quad \text { where } \sigma=\left(\begin{array}{ccc}
1 & 2 & 3 \\
i & j & k
\end{array}\right)
$$

Yes.

Problem 2. Find a homomorphism $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ such that $\operatorname{Ker}(\Phi)=U_{5}$ (no reasons needed).
$\operatorname{Ker}(\Phi)=U_{5}$ means that $\Phi\left(U_{5}\right)=1 \in \mathbb{C}^{*}$. One convenient choice is $\Phi(a)=$ a^{5} where $a \in \mathbb{C}^{*}$. It is easily verified as homomorphism, and $a^{5}=1$ precisely when $a \in U_{5}$.

Problem 3. Let A and B be groups. Find an isomorphism $\Phi: A \times B \rightarrow$ $B \times A$.

The required isomorphism is $\Phi((a, b))=(b, a)$, where $a \in A, b \in B$. We need to check it is an isomorphism (As in tutorial, a simple operation like the inverse operation is NOT a homomorphism)
Let $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$. Then $\Phi\left((a, b)\left(a^{\prime}, b^{\prime}\right)\right)=\Phi\left(\left(a a^{\prime}, b b^{\prime}\right)\right)=\left(b b^{\prime}, a a^{\prime}\right)=$ $(b, a)\left(b^{\prime}, a^{\prime}\right)=\Phi((a, b)) \Phi\left(\left(a^{\prime}, b^{\prime}\right)\right)$. Hence it is a homomorphism.
Let $(b, a) \in B \times A$. Then we notice that $(a, b) \in A \times B$ and $\Phi((a, b))=(b, a)$. Hence Φ is surjective.
Finally let $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$ such that $\Phi((a, b))=\Phi\left(\left(a^{\prime}, b^{\prime}\right)\right)$. Then $(b, a)=\left(b^{\prime}, a^{\prime}\right)$ and hence $b=b^{\prime}, a=a^{\prime}$. It follows that $(a, b)=\left(a^{\prime}, b\right)$ and hence Φ is injective.
So Φ is an isomorphism as required.

Problem 4. Let G be a finite group, H_{1} and H_{2} be subgroups of G. (1). Prove that $H_{1} \cap H_{2}$ is a subgroup of G. (2). If $\left|H_{1}\right|$ and $\left|H_{2}\right|$ are relatively prime, prove that $H_{1} \cap H_{2}=\{e\}$.
(1) This is a routine verification. We use the condense form of subgroup criterion as before. Trivially $H_{1} \cap H_{2} \subset G$. Suppose $g, h \in H_{1} \cap H_{2}$. Then $g, h \in H_{1}$ and $g, h \in H_{2}$ by definition. By the condensed form of the criterion, $g h^{-1} \in H_{1}$ and $g h^{-1} \in H_{2}$, hence $g h^{-1} \in H_{1} \cap H_{2}$. By the criterion, $H_{1} \cap H_{2} \leq G$.
(2) In fact $H_{1} \cap H_{2} \subset H_{1}$ and $H_{1} \cap H_{2} \subset H_{2}$. By the same verification as (1), we have $H_{1} \cap H_{2}$ is a subgroup for both H_{1} and H_{2}. By Lagrange's theorem, $\left|H_{1} \cap H_{2}\right|\left|\left|H_{1}\right|\right.$ and $| H_{1} \cap H_{2}| |\left|H_{2}\right|$, and hence $\left|H_{1} \cap H_{2}\right| \mid \operatorname{gcd}\left(\left|H_{1}\right|,\left|H_{2}\right|\right)=$ 1. So $\left|H_{1} \cap H_{2}\right|=1$ but we certainly have $e \in H_{1} \cap H_{2}$. Hence $H_{1} \cap H_{2}=\{e\}$.

Problem 5. Let G and G^{\prime} be finite groups, suppose that $|G|$ and $\left|G^{\prime}\right|$ are relatively prime, prove that a homomorphism $\phi: G \rightarrow G^{\prime}$ must be trivial,
i.e., $\phi(a)=e^{\prime}$ for all $a \in G$

Proof. This is actually a corollary to tutorial 10 question 1. (Also from the textbook Exercise 13.44 and 13.45). From these two exercises we have $\phi(G)||G|$ and $\phi(G)|\left|G^{\prime}\right|$, Hence $\phi(G) \mid g c d\left(|G|,\left|G^{\prime}\right|\right)=1$. But we certainly have $\phi(e)=e^{\prime}$ for any homorphism ϕ, where e and e^{\prime} are identity elements of G and G^{\prime} respectively. So $\phi(G)=\left\{e^{\prime}\right\}$, i.e. the homomorphism is trivial.

