Solutions to Homework No.5 for Math 3121

Final Exam will take place on Dec 12, 9:30-11:30am in online format. The exam paper will be sent to you by email around 9:25 am.

Problem 1. Multiple choice (each problem has only one correct answer, no reasons needed).

(1). Let G be a finite group with |G| = n, which is the following statement is false ?

(a). For each divisor d of n, there exists a subgroup H of G such that |H| = d.

(b). For every $a \in G$, $a^n = e$.

(c). If H is a subgroup of G, then |H| is a divisor of n.

(d). The order of every element $a \in G$ is a divisor of n.

Answer: (a) is false. Reason 1: $|A_4| = 12$, A_4 has no subgroup with order 4. Reason 2: The other three statements are true.

(2). Which of the following rings is an integral domain?
(a). Z × Z.
(b). Z₂₀.
(c) Z.
(d). None of above

Answer: (c)

(3). The maximal possible order of an element in S_7 is (a) 7, (b). 7!, (c). 12 (d). None of above

Answer: (c) Reason: (123)(4567) has order 12; no element has order bigger than 12.

(4). If R is a commutative ring, $a \in R$, $a \neq 0$ is NOT a 0-divisor, which of the following is NOT correct?

(a) ab = 0 implies that b = 0. (b) a^{2019} is not a 0-divisor.

(c) a^{-1} exists. (d) -a is not a 0-divisor.

Answer: (c). Reason: In ring \mathbb{Z} , 2 is not a 0-divisor, but 2^{-1} doesn't exist in \mathbb{Z} .

(5). Which of the following groups is isomorphic to the factor group \mathbb{R}/\mathbb{Z} ?

(a). \mathbb{C} . (b). \mathbb{R}^* . (c). $GL_2(\mathbb{R})$.

(d). $\{z \in \mathbb{C}^* \mid |z| = 1\}$, the operation is the multiplication

Answer: (d). Reason: the map $\phi : \mathbb{R} \to \{z \in \mathbb{C}^* \mid |z| = 1\}$ given by

 $\phi(x) = e^{2\pi i x}$ is a surjective group homomorphism with $Ker(\phi) = \mathbb{Z}$, apply the homomorphism theorem (Theorem 14.11) to ϕ .

(6). Which of the following sets is a subring of $M_2(\mathbb{R})$? (a). $S = \{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \}$. (b). $S = \{ \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix} \mid x \in \mathbb{R} \}$ (c). $S = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \}$ (d). None of the above.

Answer: (c).

(7). Which of the following elements in Z₁₀₀ has a multiplicative inverse? (recall that a' is the multiplicative inverse of a if aa' = 1).
(a). 55, (b). 9, (c). 40 (d). None of above.

Answer: (b). Reason: because 9 is relatively prime to 100 and Theorem 20.6.

Problem 2. Multiple choice. Find the kernel $\text{Ker}(\Phi)$ of the following group homomorphisms Φ (no reasons needed).

(1). $\Phi : \mathbb{R}^* \to \mathbb{R}^*$, $\Phi(a) = a^{2018}$, $\operatorname{Ker}(\Phi)$ is (a) U_{2018} (b) $\{1, -1\}$ (c) $\{1\}$. (2). $\Phi : GL(n, \mathbb{R}) \to \mathbb{R}^*$, $\Phi(A) = Det(A)$, $\operatorname{Ker}(\Phi)$ is (a) $\{e\}$ (b) $\{A \in GL(n, \mathbb{R}) \mid Det(A) = 1\}$ (c) None of above. (3). $\Phi : \mathbb{R} \to \mathbb{C}^*$, $\Phi(a) = e^{2\pi i a}$, $\operatorname{Ker}(\Phi)$ is (a) \mathbb{Z} (b) $\{0\}$ (c) None of above. (4). $\Phi : \mathbb{C}^* \to \mathbb{C}^*$, $\Phi(z) = z^6$, $\operatorname{Ker}(\Phi)$ is (a) U_6 (b) $\{1, -1\}$ (c) None of above. (5). $\Phi : S_3 \to S_4$, $\Phi(\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ i & j & k & 4 \end{pmatrix}$, where $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ i & j & k \end{pmatrix}$, $\operatorname{Ker}(\Phi)$ is (a) $\{e\}$ (b) S_3 (c). None of above. Answer: (1) b. (2) b. (3)a. (4)a. (5)a.

Problem 3. Determine if the following maps are homomorphisms of groups (No reasons needed).

- (1). $\Phi : \mathbb{R}^* \to \mathbb{R}^*, \quad \Phi(a) = 19a$ (2). $\Phi : \mathbb{R}^* \to \mathbb{R}^*, \quad \Phi(a) = a^{19}$ (3). $\Phi : \mathbb{R} \to \mathbb{R}, \quad \Phi(a) = 19a$
- (4). $\Phi : \mathbb{R} \to \mathbb{R}, \quad \Phi(a) = -a$
- (5). $\Phi: GL(n,\mathbb{R}) \to \mathbb{R}^*, \quad \Phi(A) = Det(A)^{2019}.$

(6). $\Phi : \mathbb{R} \to \mathbb{R}^*$, $\Phi(a) = 2^a$. (7). $\Phi : \mathbb{R}^* \to \mathbb{R}$, $\Phi(a) = 2^a$. (8). $\Phi : \mathbb{R}^* \to \mathbb{R}$, $\Phi(a) = \log_6(a^2)$. **Answer:** (1) No. (2) Yes. (3) Yes. (4) Yes. (5) Yes. (6) Yes (7)

Problem 4. Determine whether each of the following maps is a ring homomorphism (no reasons needed)

No

(8) Yes

(1). $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by $\phi((a, b)) = b$. (2). $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by $\phi(a, b) = ab$. (3). $\phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. (4). $\Phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & -a \\ 0 & 0 \end{pmatrix}$. (5). $\Phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$. (6). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(a + bi) = a - bi$. (7). $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(z) = 2z$. (8). Let g be given 2×2 invertible matrix, $\phi : M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\phi(X) = gXg^{-1}$.

Answer: (1) Yes (2) No. (3) Yes. (4) Yes. (5) No. (6) Yes (7) No (8) Yes

Problem 5. (no reasons needed) (1) Find a subring of $M_2(\mathbb{R})$ that is isomorphisc to \mathbb{R} .

(2) Find a subring R of \mathbb{Q} such that R contains \mathbb{Z} but $R \neq \mathbb{Z}$ and $R \neq \mathbb{Q}$.

Answer: (1) $\left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{R} \right\}$ (the answer is not unique). (2) $\left\{ \frac{m}{2^n} \mid m \in \mathbb{Z}, n = 0, 1, 2, \dots \right\}$ (the answer is not unique).

Problem 6. Let *R* be a ring with unity 1. Suppose $a \in R$ has multiplicative inverse $a^{-1} \in R$, that is $aa^{-1} = a^{-1}a = 1$. Prove that the map $\phi : R \to R$ given by $\phi(x) = axa^{-1}$ is a ring homomorphism. Which of the following proofs is correct ?

Proof 1. For arbitrary $x \in R$, $\phi(x) = axa^{-1} = aa^{-1}x = x$, so $\phi(x+y) = x+y = \phi(x) + \phi(y)$, $\phi(xy) = xy = \phi(x)\phi(y)$. This proves ϕ is a ring homomorphism.

Proof 2. For arbitrary $x, y \in R$, $\phi(x + y) = a(x + y)a^{-1} = axa^{-1} + aya^{-1} = \phi(x) + \phi(y)$, $\phi(xy) = axya^{-1} = (axa^{-1})(aya^{-1}) = \phi(x)\phi(y)$. This proves ϕ is a ring homomorphism.

Proof 3. For arbitrary $x, y \in R$, $\phi(x + y) = a(x + y)a^{-1} = axa^{-1} + aya^{-1} = \phi(x) + \phi(y)$, This proves ϕ is a ring homomorphism.

Answer: Proof 2 is correct.

Problem 7. Let *R* be a finite commutative ring with unity 1. Suppose $a \in R$, $a \neq 0$ and *a* is **not** a 0 divisor. Prove that there exists $a' \in R$, that is aa' = 1. Which of the following proofs is correct?

Proof 1. Consider the infinite list a, a^2, a^3, \ldots , since R is finite, there exists $m > n \ge 1$ such that $a^m = a^n$. So $a^m - a^n = 0$, $a^n(a^{m-n} - 1) = 0$. Because a is not 0-divisor, so $a^{m-n} - 1 = 0$, so $a^{m-n} = 1$, so $aa^{m-n-1} = 1$. $a' = a^{m-n-1}$.

Proof 2. Because $a \neq 0$ and a is not a 0 divisor, so a^{-1} exists, so $a' = a^{-1}$.

Proof 3. Because R is finite, let n = |R|, by Lagrange theorem, $a^n = 1$, so $a' = a^{n-1}$.

Answer: Proof 1 is correct.