Solutions to Homework No. 5 for Math 3121

Final Exam will take place on Dec 12, 9:30-11:30am in online format. The exam paper will be sent to you by email around 9:25 am.

Problem 1. Multiple choice (each problem has only one correct answer, no reasons needed).
(1). Let G be a finite group with $|G|=n$, which is the following statement is false ?
(a). For each divisor d of n, there exists a subgroup H of G such that $|H|=d$.
(b). For every $a \in G, a^{n}=e$.
(c). If H is a subgroup of G, then $|H|$ is a divisor of n.
(d). The order of every element $a \in G$ is a divisor of n.

Answer: (a) is false. Reason 1: $\left|A_{4}\right|=12, A_{4}$ has no subgroup with order
4. Reason 2: The other three statements are true.
(2). Which of the following rings is an integral domain?
(a). $\mathbb{Z} \times \mathbb{Z}$.
(b). \mathbb{Z}_{20}.
(c) \mathbb{Z}.
(d). None of above

Answer: (c)

(3). The maximal possible order of an element in S_{7} is
(a) 7 ,
(b). 7 !,
(c). 12
(d). None of above

Answer: (c) Reason: (123)(4567) has order 12; no element has order bigger than 12.
(4). If R is a commutative ring, $a \in R, a \neq 0$ is NOT a 0 -divisor, which of the following is NOT correct?
(a) $a b=0$ implies that $b=0$.
(b) a^{2019} is not a 0-divisor.
(c) a^{-1} exists.
(d) $-a$ is not a 0 -divisor.

Answer: (c). Reason: In ring $\mathbb{Z}, 2$ is not a 0 -divisor, but 2^{-1} doesn't exist in \mathbb{Z}.
(5). Which of the following groups is isomorphic to the factor group \mathbb{R} / \mathbb{Z} ?
(a). \mathbb{C}.
(b). \mathbb{R}^{*}.
(c). $G L_{2}(\mathbb{R})$.
(d). $\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$, the operation is the multiplication

Answer: (d). Reason: the map $\phi: \mathbb{R} \rightarrow\left\{z \in \mathbb{C}^{*}| | z \mid=1\right\}$ given by
$\phi(x)=e^{2 \pi i x}$ is a surjective group homomorphism with $\operatorname{Ker}(\phi)=\mathbb{Z}$, apply the homomorphism theorem (Theorem 14.11) to ϕ.
(6). Which of the following sets is a subring of $M_{2}(\mathbb{R})$?
(a). $S=\left\{\left.\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}$.
(b). $S=\left\{\left.\left(\begin{array}{ll}0 & x \\ x & 0\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}$
(c). $S=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$
(d). None of the above.

Answer: (c).
(7). Which of the following elements in \mathbb{Z}_{100} has a multiplicative inverse? (recall that a^{\prime} is the multiplicative inverse of a if $a a^{\prime}=1$).
(a). 55 ,
(b). 9 ,
(c). 40
(d). None of above.

Answer: (b). Reason: because 9 is relatively prime to 100 and Theorem 20.6.

Problem 2. Multiple choice. Find the kernel $\operatorname{Ker}(\Phi)$ of the following group homomorphisms Φ (no reasons needed).
(1). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=a^{2018}, \quad \operatorname{Ker}(\Phi)$ is
(a) U_{2018}
(b) $\{1,-1\}$
(c) $\{1\}$.
(2). $\Phi: G L(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}, \quad \Phi(A)=\operatorname{Det}(A), \quad \operatorname{Ker}(\Phi)$ is
(a) $\{e\}$
(b) $\{A \in G L(n, \mathbb{R}) \mid$
$\mid \operatorname{Det}(A)=1\}$
(c) None of above.
(3). $\Phi: \mathbb{R} \rightarrow \mathbb{C}^{*}, \quad \Phi(a)=e^{2 \pi i a}, \quad \operatorname{Ker}(\Phi)$ is
(a) \mathbb{Z}
(b) $\{0\}$
(c) None of above.
(4). $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}, \quad \Phi(z)=z^{6}, \quad \operatorname{Ker}(\Phi)$ is
(a) U_{6}
(b) $\{1,-1\}$
(c) None of above.
(5). $\Phi: S_{3} \rightarrow S_{4}, \quad \Phi(\sigma)=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ i & j & k & 4\end{array}\right), \quad$ where $\sigma=\left(\begin{array}{ccc}1 & 2 & 3 \\ i & j & k\end{array}\right)$,
$\operatorname{Ker}(\Phi)$ is
(a) $\{e\}$
(b) S_{3}
(c). None of above.

Answer: (1) b. (2) b. (3)a. (4)a. (5)a.

Problem 3. Determine if the following maps are homomorphisms of groups (No reasons needed).
(1). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=19 a$
(2). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=a^{19}$
(3). $\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad \Phi(a)=19 a$
(4). $\Phi: \mathbb{R} \rightarrow \mathbb{R}, \quad \Phi(a)=-a$
(5). $\Phi: G L(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}, \quad \Phi(A)=\operatorname{Det}(A)^{2019}$.
(6). $\Phi: \mathbb{R} \rightarrow \mathbb{R}^{*}, \quad \Phi(a)=2^{a}$.
(7). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}, \quad \Phi(a)=2^{a}$.
(8). $\Phi: \mathbb{R}^{*} \rightarrow \mathbb{R}, \quad \Phi(a)=\log _{6}\left(a^{2}\right)$.
Answer: (1) No.
(2) Yes.
(3) Yes.
(4) Yes.
(5) Yes.
(6)Yes

No (8) Yes

Problem 4. Determine whether each of the following maps is a ring homomorphism (no reasons needed)
(1). $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\phi((a, b))=b$.
(2). $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\phi(a, b)=a b$.
(3). $\phi: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$.
(4). $\Phi: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{cc}a & -a \\ 0 & 0\end{array}\right)$.
(5). $\Phi: \mathbb{R} \rightarrow M_{2}(\mathbb{R})$ given by $\phi(a)=\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right)$.
(6). $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(a+b i)=a-b i$.
(7). $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(z)=2 z$.
(8). Let g be given 2×2 invertible matrix, $\phi: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ given by $\phi(X)=g X g^{-1}$.
Answer: (1) Yes
(2) No.
(3) Yes.
(4) Yes.
(5) No.
(6)Yes
(7) No
(8) Yes

Problem 5. (no reasons needed) (1) Find a subring of $M_{2}(\mathbb{R})$ that is isomorphisc to \mathbb{R}.
(2) Find a subring R of \mathbb{Q} such that R contains \mathbb{Z} but $R \neq \mathbb{Z}$ and $R \neq \mathbb{Q}$.

Answer: (1) $\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$ (the answer is not unique).
(2) $\left\{\left.\frac{m}{2^{n}} \right\rvert\, m \in \mathbb{Z}, n=0,1,2, \ldots\right\}$ (the answer is not unique).

Problem 6. Let R be a ring with unity 1. Suppose $a \in R$ has multiplicative inverse $a^{-1} \in R$, that is $a a^{-1}=a^{-1} a=1$. Prove that the map $\phi: R \rightarrow R$ given by $\phi(x)=a x a^{-1}$ is a ring homomorphism. Which of the following proofs is correct?

Proof 1. For arbitrary $x \in R, \phi(x)=a x a^{-1}=a a^{-1} x=x$, so $\phi(x+y)=x+y=$ $\phi(x)+\phi(y), \phi(x y)=x y=\phi(x) \phi(y)$. This proves ϕ is a ring homomorphism.

Proof 2. For arbitrary $x, y \in R, \phi(x+y)=a(x+y) a^{-1}=a x a^{-1}+a y a^{-1}=$ $\phi(x)+\phi(y), \phi(x y)=a x y a^{-1}=\left(a x a^{-1}\right)\left(a y a^{-1}\right)=\phi(x) \phi(y)$. This proves ϕ is a ring homomorphism.

Proof 3. For arbitrary $x, y \in R, \phi(x+y)=a(x+y) a^{-1}=a x a^{-1}+a y a^{-1}=$ $\phi(x)+\phi(y)$, This proves ϕ is a ring homomorphism.

Answer: Proof 2 is correct.

Problem 7. Let R be a finite commutative ring with unity 1. Suppose $a \in$ $R, a \neq 0$ and a is not a 0 divisor. Prove that there exists $a^{\prime} \in R$, that is $a a^{\prime}=1$. Which of the following proofs is correct?

Proof 1. Consider the infinite list a, a^{2}, a^{3}, \ldots, since R is finite, there exists $m>n \geq 1$ such that $a^{m}=a^{n}$. So $a^{m}-a^{n}=0, a^{n}\left(a^{m-n}-1\right)=0$. Because a is not 0 -divisor, so $a^{m-n}-1=0$, so $a^{m-n}=1$, so $a a^{m-n-1}=1$. $a^{\prime}=a^{m-n-1}$.

Proof 2. Because $a \neq 0$ and a is not a 0 divisor, so a^{-1} exists, so $a^{\prime}=a^{-1}$.

Proof 3. Because R is finite, let $n=|R|$, by Lagrange theorem, $a^{n}=1$, so $a^{\prime}=a^{n-1}$.

Answer: Proof 1 is correct.

