Mathematical Excalibur

Olympiad Corner

The 2005 International Mathematical Olympiad was held in Merida，Mexico on July 13 and 14．Below are the problems．

Problem 1．Six points are chosen on the sides of an equilateral triangle $A B C$ ： A_{1}, A_{2} on $B C ; B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$ ．These points are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths．Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent．

Problem 2．Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms．Suppose that for each positive integer n ，the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n ． Prove that each integer occurs exactly once in the sequence．

Problem 3．Let x, y and z be positive real numbers such that $x y z \geq 1$ ．Prove that
$\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0$.
（continued on page 4）
Editors：張百康（CHEUNG Pak－Hong），Munsang College，HK高子眉（KO Tsz－Mei）
梁達榮（LEUNG Tat－Wing）
李 健 賢（LI Kin－Yin），Dept．of Math．，HKUST
吳鏡波（NG Keng－Po Roger），ITC，HKPU
Artist：楊 秀 英（YEUNG Sau－Ying Camille），MFA，CU
Acknowledgment：Thanks to Elina Chiu，Math．Dept．， HKUST for general assistance．

On－line：

http：／／www．math．ust．hk／mathematical＿excalibur／
The editors welcome contributions from all teachers and students．With your submission，please include your name， address，school，email，telephone and fax numbers（if available）．Electronic submissions，especially in MS Word， are encouraged．The deadline for receiving material for the next issue is October 30， 2005.
For individual subscription for the next five issues for the $03-04$ academic year，send us five stamped self－addressed envelopes．Send all correspondence to：

Dr．Kin－Yin LI

Department of Mathematics
The Hong Kong University of Science and Technology Clear Water Bay，Kowloon，Hong Kong

Fax：（852） 23581643
Email：makyli＠ust．hk

Famous Geometry Theorems

Kin Y．Li

There are many famous geometry theorems．We will look at some of them and some of their applications． Below we will write $P=W X \cap Y Z$ to denote P is the point of intersection of lines $W X$ and $Y Z$ ．If points A, B, C are collinear，we will introduce the sign convention：$A B / B C=\overrightarrow{A B} / \overrightarrow{B C}$（so if B is between A and C ，then $A B / B C \geq 0$ ， otherwise $A B / B C \leq 0)$ ．

Menelaus＇Theorem Points X, Y, Z are taken from lines $A B, B C, C A$（which are the sides of $\triangle A B C$ extended） respectively．If there is a line passing through X, Y, Z ，then

Proof Let L be a line perpendicular to the line through X, Y, Z and intersect it at O ．Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the feet of the perpendiculars from A, B, C to L respectively．Then

$$
\frac{A X}{X B}=\frac{A^{\prime} O}{O B^{\prime}}, \frac{B Y}{Y C}=\frac{B^{\prime} O}{O C^{\prime}}, \frac{C Z}{Z A}=\frac{C^{\prime} O}{O A^{\prime}} .
$$

Multiplying these equations together， we get the result．

The converse of Menelaus＇Theorem is also true．To see this，let $Z^{\prime}=X Y \cap C A$ ． Then applying Menelaus theorem to the line through X, Y, Z＇and comparing with the equation above，we get $C Z / Z A=C Z^{\prime} / Z^{\prime} A$ ．It follows $Z=Z^{\prime}$ ．

Pascal＇s Theorem Let A, B, C, D, E, F be points on a circle（which are not necessarily in cyclic order）．Let

$$
P=A B \cap D E, Q=B C \cap E F, \quad R=C D \cap F A .
$$

Then P, Q, R are collinear．

Proof Let $X=E F \cap A B, Y=A B \cap C D$ ， $Z=C D \cap E F$ ．Applying Menelaus＇ Theorem respectively to lines $B C, D E$ ， $F A$ cutting $\triangle X Y Z$ extended，we have

$$
\begin{aligned}
& \frac{Z Q}{Q X} \cdot \frac{X B}{B Y} \cdot \frac{Y C}{C Z}=-1 \\
& \frac{X P}{P Y} \cdot \frac{Y D}{D Z} \cdot \frac{Z E}{E X}=-1 \\
& \frac{Y R}{R Z} \cdot \frac{Z F}{F X} \cdot \frac{X A}{A Y}=-1 .
\end{aligned}
$$

Multiplying these three equations together，then using the intersecting chord theorem（see vol 4，no．3，p． 2 of Mathematical Excalibur）to get $X A \cdot X B$ $=X E \cdot X F, Y C \cdot Y D=Y A \cdot Y B, Z E \cdot Z F=$ $Z C \cdot Z D$ ，we arrive at the equation

$$
\frac{Z Q}{Q X} \cdot \frac{X P}{P Y} \cdot \frac{Y R}{R Z}=-1
$$

By the converse of Menelaus＇ Theorem，this implies P, Q, R are collinear．

We remark that there are limiting cases of Pascal＇s Theorem．For example，we may move A to approach B ．In the limit，A and B will coincide and the line $A B$ will become the tangent line at B ．

Below we will give some examples of using Pascal＇s Theorem in geometry problems．

Example 1 （2001 Macedonian Math Olympiad）For the circumcircle of \triangle $A B C$ ，let D be the intersection of the tangent line at A with line $B C, E$ be the intersection of the tangent line at B with line $C A$ and F be the intersection of the tangent line at C with line $A B$ ．Prove that points D, E, F are collinear．

Solution Applying Pascal's Theorem to A, A, B, B, C, C on the circumcircle, we easily get D, E, F are collinear.

Example 2 Let D and E be the midpoints of the minor arcs $A B$ and $A C$ on the circumcircle of $\triangle A B C$, respectively. Let P be on the minor arc $B C, Q=D P \cap B A$ and $R=P E \cap A C$. Prove that line $Q R$ passes through the incenter I of $\triangle A B C$.

Solution Since D is the midpoint of arc $A B$, line $C D$ bisects $\angle A C B$. Similarly, line $E B$ bisects $\angle A B C$. So I $=C D \cap E B$. Applying Pascal's Theorem to C, D, P, E, B, A, we get I, Q, R are collinear.

Newton's Theorem A circle is inscribed in a quadrilateral $A B C D$ with sides $A B, B C, C D, D A$ touch the circle at points E, F, G, H respectively. Then lines $A C, E G, B D, F H$ are concurrent.

Proof. Let $O=E G \cap F H$ and $X=$ $E H \cap F G$. Since D is the intersection of the tangent lines at G and at H to the circle, applying Pascal's Theorem to E, G, G, F, H, H, we get O, D, X are collinear. Similarly, applying Pascal's Theorem to E, E, H, F, F, G, we get B, X, O are collinear.

Then B, O, D are collinear and so lines $E G, B D, F H$ are concurrent at O. Similarly, we can also obtain lines $A C$, $E G, F H$ are concurrent at O. Then Newton's Theorem follows.

Example 3 (2001 Australian Math Olympiad) Let $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ be points on a circle such that $A A^{\prime}$ is perpendicular to $B C, B B^{\prime}$ is perpendicular to $C A, C C^{\prime}$ is perpendicular to $A B$. Further, let D be a point on that circle and let $D A^{\prime}$
intersect $B C$ in $A^{\prime \prime}, D B^{\prime}$ intersect $C A$ in $B^{\prime \prime}$, and $D C^{\prime}$ intersect $A B$ in $C^{\prime \prime}$, all segments being extended where required. Prove that A ", $B^{\prime \prime}, C^{\prime \prime}$ and the orthocenter of triangle $A B C$ are collinear.

Solution Let H be the orthocenter of \triangle $A B C$. Applying Pascal's theorem to A, A^{\prime}, D, C^{\prime}, C, B, we see $H, A^{\prime \prime}, C^{\prime \prime}$ are collinear. Similarly, applying Pascal's theorem to B ', D, C^{\prime}, C, A, B, we see $B^{\prime \prime}, C^{\prime \prime}, H$ are collinear. So $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, H$ are collinear.

Example 4 (1991 IMO unused problem) Let $A B C$ be any triangle and P any point in its interior. Let P_{1}, P_{2} be the feet of the perpendiculars from P to the two sides $A C$ and $B C$. Draw $A P$ and $B P$ and from C drop perpendiculars to $A P$ and $B P$. Let Q_{1} and Q_{2} be the feet of these perpendiculars. If $Q_{2} \neq P_{1}$ and $Q_{1} \neq P_{2}$, then prove that the lines $P_{1} Q_{2}, Q_{1} P_{2}$ and $A B$ are concurrent.

Solution Since $\angle C P_{1} P, \angle C P_{2} P, \angle$ $C Q_{2} P, \angle C Q_{1} P$ are all right angles, we see that the points $C, Q_{1}, P_{1}, P, P_{2}, Q_{2}$ lie on a circle with $C P$ as diameter. Note $A=C P_{1}$ $\cap P Q_{1}$ and $B=Q_{2} P \cap P_{2} C$. Applying Pascal's theorem to $C, P_{1}, Q_{2}, P, Q_{1}, P_{2}$, we see $X=P_{1} Q_{2} \cap Q_{1} P_{2}$ is on line $A B$.

Desargues' Theorem For $\triangle A B C$ and \triangle $A^{\prime} B^{\prime} C^{\prime}$, if lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur at a point O, then points P, Q, R are collinear, where $P=B C \cap B^{\prime} C^{\prime}, Q=C A \cap C^{\prime} A^{\prime}, R$ $=A B \cap A^{\prime} B^{\prime}$.

Proof Applying Menelaus' Theorem respectively to line $A^{\prime} B^{\prime}$ cutting $\triangle O A B$ extended, line $B^{\prime} C^{\prime}$ cutting $\triangle O B C$ extended and the line $C^{\prime} A^{\prime}$ cutting $\triangle O C A$ extended, we have

$$
\begin{aligned}
& \frac{O A^{\prime}}{A^{\prime} A} \cdot \frac{A R}{R B} \cdot \frac{B B^{\prime}}{B^{\prime} O}=-1, \\
& \frac{O B^{\prime}}{B^{\prime} B} \cdot \frac{B P}{P C} \cdot \frac{C C^{\prime}}{C^{\prime} O}=-1, \\
& \frac{A A^{\prime}}{A^{\prime} O} \cdot \frac{O C^{\prime}}{C^{\prime} C} \cdot \frac{C Q}{Q A}=-1
\end{aligned}
$$

Multiplying these three equations,

$$
\frac{A R}{R B} \cdot \frac{B P}{P C} \cdot \frac{C Q}{Q A}=-1
$$

By the converse of Menelaus' Theorem, this implies P, Q, R are collinear.

We remark that the converse of Desargues' Theorem is also true. We can prove it as follow: let $O=B B^{\prime} \cap$ $C C^{\prime}$. Consider $\triangle R B B^{\prime}$ and $\triangle Q C C^{\prime}$. Since lines $R Q, B C, B^{\prime} C^{\prime}$ concur at P, and $A=R B \cap Q C, O=B B^{\prime} \cap C C^{\prime}, A^{\prime}$ $=B R^{\prime} \cap C^{\prime} Q$, by Desargues' Theorem, we have A, O, A^{\prime} are collinear. Therefore, lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ concur at O.

Brianchon's Theorem Lines $A B, B C$, $C D, D E, E F, F A$ are tangent to a circle at points G, H, I, J, K, L (not necessarily in cyclic order). Then lines $A D, B E$, $C F$ are concurrent.

Proof Let $M=A B \cap C D, N=D E \cap$ FA. Applying Newton's Theorem to quadrilateral $A M D N$, we see lines $A D$, $I L, G J$ concur at a point A^{\prime}. Similarly, lines $B E, H K, G J$ concur at a point B^{\prime} and lines $C F, H K, I L$ concur at a point C '. Note line $I L$ coincides with line $A^{\prime} C^{\prime}$. Next we apply Pascal's Theorem to G, G, I, L, L, H and get points A, O, P are collinear, where $O=G I \cap L H$ and $P=I L \cap H G$. Applying Pascal's Theorem again to H, H, L, I, I, G, we get C, O, P are collinear. Hence A, C, P are collinear.

Now $G=A B \cap A^{\prime} B^{\prime}, H=B C \cap B^{\prime} C^{\prime}$, $P=C A \cap I L=C A \cap C^{\prime} A^{\prime}$. Applying the converse of Desargues' Theorem to $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$, we get lines $A A^{\prime}$ $=A D, B B^{\prime}=B E, C C^{\prime}=C F$ are concurrent.
(continued on page 4)

Problem Corner

We welcome readers to submit their solutions to the problems posed below for publication consideration. The solutions should be preceded by the solver's name, home (or email) address and school affiliation. Please send submissions to Dr. Kin Y. Li, Department of Mathematics, The Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon, Hong Kong. The deadline for submitting solutions is October 30, 2005.

Problem 231. On each planet of a star system, there is an astronomer observing the nearest planet. The number of planets is odd, and pairwise distances between them are different. Prove that at least one planet is not under observation.
(Source: 1966 Soviet Union Math Olympiad)

Problem 232. B and C are points on the segment $A D$. If $A B=C D$, prove that $P A+P D \geq P B+P C$ for any point P.
(Source: 1966 Soviet Union Math Olympiad)

Problem 233. Prove that every positive integer not exceeding n ! can be expressed as the sum of at most n distinct positive integers each of which is a divisor of $n!$.

Problem 234. Determine all polynomials $P(x)$ of the smallest possible degree with the following properties:
a) The coefficient of the highest power is 200 .
b) The coefficient of the lowest power for which it is not equal to zero is 2 .
c) The sum of all its coefficients is 4 .
d) $P(-1)=0, P(2)=6$ and $P(3)=8$.
(Source: 2002 Austrian National Competition)
Problem 235. Forty-nine students solve a set of three problems. The score for each problem is an integer from 0 to 7. Prove that there exist two students A and B such that, for each problem, A will score at least as many points as B.

Problem 226. Let $z_{1}, z_{2}, \ldots, z_{n}$ be complex numbers satisfying

$$
\left|z_{1}\right|+\left|z_{2}\right|+\cdots+\left|z_{n}\right|=1
$$

Prove that there is a nonempty subset of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ the sum of whose elements has modulus at least $1 / 4$.

Solution. LEE Kai Seng (HKUST).

Let $z_{k}=a_{k}+b_{k} i$ with a_{k}, b_{k} real. Then $\left|z_{k}\right|$ $\leq\left|a_{k}\right|+\left|b_{k}\right|$. So

$$
\begin{aligned}
1 & =\sum_{k=1}^{n}\left|z_{k}\right| \leq \sum_{k=1}^{n}\left|a_{k}\right|+\sum_{k=1}^{n}\left|b_{k}\right| \\
& =\sum_{a_{k} \geq 0} a_{k}+\sum_{a_{k}<0}\left(-a_{k}\right)+\sum_{b_{k} \geq 0} b_{k}+\sum_{b_{k}<0}\left(-b_{k}\right) .
\end{aligned}
$$

Hence, one of the four sums is at least $1 / 4$, say $\sum_{a_{k} \geq 0} a_{k} \geq \frac{1}{4}$. Then

$$
\left|\sum_{a_{k} \geq 0} z_{k}\right| \geq\left|\sum_{a_{k} \geq 0} a_{k}\right| \geq \frac{1}{4} .
$$

Problem 227. For every integer $n \geq 6$, prove that

$$
\sum_{k=1}^{n-1} \frac{n}{n-k} \cdot \frac{1}{2^{k-1}} \leq \frac{16}{5}
$$

Comments. In the original statement of the problem, the displayed inequality was stated incorrectly. The $<$ sign should be an \leq sign.
Solution. CHAN Pak Woon (Wah Yan College, Kowloon, Form 7), Roger CHAN (Vancouver, Canada) and LEE Kai Seng (HKUST).

For $n=6,7, \ldots$, let

$$
a_{n}=\sum_{k=1}^{n-1} \frac{n}{n-k} \cdot \frac{1}{2^{k-1}} .
$$

Then $a_{6}=16 / 5$. For $n \geq 6$, if $a_{n} \leq 16 / 5$, then

$$
\begin{aligned}
a_{n+1} & =\sum_{k=1}^{n} \frac{n+1}{n+1-k} \cdot \frac{1}{2^{k-1}}=\sum_{j=0}^{n-1} \frac{n+1}{n-j} \cdot \frac{1}{2^{j}} \\
& =\frac{n+1}{n}+\frac{n+1}{2 n} \sum_{j=1}^{n-1} \frac{n}{n-j} \cdot \frac{1}{2^{j-1}} \\
& =\frac{n+1}{n}\left(1+\frac{a_{n}}{2}\right) \leq \frac{7}{6}\left(1+\frac{8}{5}\right)<\frac{16}{5} .
\end{aligned}
$$

The desired inequality follows by mathematical induction.

Problem 228. In $\triangle A B C, M$ is the foot of the perpendicular from A to the angle
bisector of $\angle B C A . \quad N$ and L are respectively the feet of perpendiculars from A and C to the bisector of $\angle A B C$. Let F be the intersection of lines $M N$ and $A C$. Let E be the intersection of lines $B F$ and $C L$. Let D be the intersection of lines $B L$ and $A C$.

Prove that lines $D E$ and $M N$ are parallel.

Solution. Roger CHAN (Vancouver, Canada).

Extend $A M$ to meet $B C$ at G and extend $A N$ to meet $B C$ at I. Then $A M=M G, A N$
$=N I$ and so lines $M N$ and $B C$ are parallel.
From $A M=M G$, we get $A F=F C$. Extend $C L$ to meet line $A B$ at J. Then $J L$ $=L C$. So lines $L F$ and $A B$ are parallel.

Let line $L F$ intersect $B C$ at H. Then $B H=$ HC. In $\triangle B L C$, segments $B E, L H$ and $C D$ concur at F. By Ceva's theorem (see vol. 2, no. 5, pp. 1-2 of Mathematical Excalibur),

$$
\frac{B H}{H C} \cdot \frac{C E}{E L} \cdot \frac{L D}{D B}=1
$$

Since $B H=H C$, we get $C E / E L=$ $D B / L D$, which implies lines $D E$ and $B C$ are parallel. Therefore, lines $D E$ and $M N$ are parallel.

Problem 229. For integer $n \geq 2$, let a_{1}, a_{2}, a_{3}, a_{4} be integers satisfying the following two conditions:
(1) for $i=1,2,3,4$, the greatest common divisor of n and a_{i} is 1 and (2) for every $k=1,2, \ldots, n-1$, we have

$$
\left(k a_{1}\right)_{n}+\left(k a_{2}\right)_{n}+\left(k a_{3}\right)_{n}+\left(k a_{4}\right)_{n}=2 n
$$

where $(a)_{n}$ denotes the remainder when a is divided by n.

Prove that $\left(a_{1}\right)_{n},\left(a_{2}\right)_{n},\left(a_{3}\right)_{n},\left(a_{4}\right)_{n}$ can be divided into two pairs, each pair having sum equals n.
(Source: 1992 Japanese Math Olympiad)

Solution. (Official Solution)

Since n and a_{1} are relatively prime, the remainders $\left(a_{1}\right)_{n},\left(2 a_{1}\right)_{n}, \ldots,\left((n-1) a_{1}\right)_{n}$ are nonzero and distinct. So there is a k among $1,2, \ldots, n-1$ such that $\left(k a_{1}\right)_{n}$ $=1$. Note that such k is relatively prime to n. If $\left(k a_{1}\right)_{n}+\left(k a_{j}\right)_{n}=n$, then $k a_{1}+k a_{j} \equiv 0(\bmod n)$ so that $a_{1}+a_{j} \equiv 0$ $(\bmod n)$ and $\left(a_{1}\right)_{n}+\left(a_{j}\right)_{n}=n$. Thus, to solve the problem, we may replace a_{i} by $\left(k a_{i}\right)_{n}$ and assume $1=a_{1} \leq a_{2} \leq a_{3} \leq$
$a_{4} \leq n-1$. By condition (2), we have

$$
\begin{equation*}
1+a_{2}+a_{3}+a_{4}=2 n \tag{A}
\end{equation*}
$$

For $k=1,2, \ldots, n-1$, let

$$
f_{i}(k)=\left[k a_{i} / n\right]-\left[(k-1) a_{i} / n\right],
$$

then $f_{i}(k) \leq\left(k a_{i} / n\right)+1-(k-1) a_{i} / n=1$ $+\left(a_{i} / n\right)<2$. So $f_{i}(k)=0$ or 1 . Since $x=$ $[x / n] n+(x)_{n}$, subtracting the case $x=$ $k a_{i}$ from the case $x=(k-1) a_{i}$, then summing $i=1,2,3,4$, using condition (2) and (A), we get

$$
f_{1}(k)+f_{2}(k)+f_{3}(k)+f_{4}(k)=2
$$

Since $a_{1}=1$, we see $f_{1}(k)=0$ and exactly two of $f_{2}(k), f_{3}(k), f_{4}(k)$ equal 1.

Since $a_{i}<n, f_{i}(2)=\left[2 a_{i} / n\right]$. Since $a_{2} \leq a_{3}$ $\leq a_{4}<n$, we get $f_{2}(2)=0, f_{3}(2)=f_{4}(2)=$ 1, i.e. $1=a_{1} \leq a_{2}<n / 2<a_{3} \leq a_{4} \leq n-1$.

Let $t_{2}=\left[n / a_{2}\right]+1$, then $f_{2}\left(t_{2}\right)=\left[t_{2} a_{2} / n\right]$ $-\left[\left(t_{2}-1\right) a_{2} / n\right]=1-0=1$. If $1 \leq k<t_{2}$, then $k<n / a_{2}, f_{2}(k)=\left[k a_{2} / n\right]-[(k-1)$ $\left.a_{2} / n\right]=0-0=0$. Next if $f_{2}(j)=1$, then $f_{2}(k)=0$ for $j<k<j+t_{2}-1$ and exactly one of $f_{2}\left(j+t_{2}-1\right)$ or $f_{2}\left(j+t_{2}\right)=$ 1.

Similarly, for $i=3,4$, let $t_{i}=\left[n /\left(n-a_{i}\right)\right]$ +1 , then $f_{i}\left(t_{i}\right)=0$ and $f_{i}(k)=1$ for $1 \leq k$ $<t_{i}$. Also, if $f_{i}(j)=0$, then $f_{i}(k)=1$ for j $<k<j+t_{i}-1$ and exactly one of $f_{i}(j+$ $\left.t_{i}-1\right)$ or $f_{i}\left(j+t_{i}\right)=0$.

Since $f_{3}\left(t_{3}\right)=0$, by (B), $f_{2}\left(t_{3}\right)=1$. If $k<$ $t_{3} \leq t_{4}$, then by (D), $f_{3}(k)=f_{4}(k)=1$. So by $(\mathrm{B}), f_{2}(k)=0$. Then by $(\mathrm{C}), t_{2}=t_{3}$.

Assume $t_{4}<n$. Since $n / 2<a_{4}<n$, we get $f_{4}(n-1)=\left(a_{4}-1\right)-\left(a_{4}-2\right)=1 \neq 0$ $=f_{4}\left(t_{4}\right)$ and so $t_{4} \neq n-1$. Also, $f_{4}\left(t_{4}\right)=0$ implies $f_{2}\left(t_{4}\right)=f_{3}\left(t_{4}\right)=1$ by (B).

Since $f_{3}\left(t_{3}\right)=0 \neq 1=f_{3}\left(t_{4}\right), t_{3} \neq t_{4}$. Thus $t_{2}=t_{3}<t_{4}$. Let $s<t_{4}$ be the largest integer such that $f_{2}(s)=1$. Since $f_{2}\left(t_{4}\right)=$ 1 , we have $t_{4}=s+t_{2}-1$ or $t_{4}=s+t_{2}$. Since $f_{2}(s)=f_{4}(s)=1$, we get $f_{3}(s)=0$. As $t_{2}=t_{3}$, we have $t_{4}=s+t_{3}-1$ or $t_{4}=$ $s+t_{3}$. Since $f_{3}(s)=0$ and $f_{3}\left(t_{4}\right)=1$, by (D), we get $f_{3}\left(t_{4}-1\right)=0$ or $f_{3}\left(t_{4}+1\right)=0$. Since $f_{2}(s)=1, f_{2}\left(t_{4}\right)=1$ and $t_{2}>2$, by (C), we get $f_{2}(s+1)=0$ and $f_{2}\left(t_{4}+1\right)=$ 0 . So $s+1 \neq t_{4}$, which implies $f_{2}\left(t_{4}-1\right)$ $=0$ by the definition of s. Then $k=t_{4}-$ 1 or $t_{4}+1$ contradicts (B).

So $t_{4} \geq n$, then $n-a_{4}=1$. We get $a_{1}+a_{4}$ $=n=a_{2}+a_{3}$.

Problem 230. Let k be a positive integer. On the two sides of a river, there are in total at least 3 cities. From each of these cities, there are exactly k
routes, each connecting the city to a distinct city on the other side of the river. Via these routes, people in every city can reach any one of the other cities.

Prove that if any one route is removed, people in every city can still reach any one of the other cities via the remaining routes.
(Source: 1996 Iranian Math Olympiad, Round 2)

Solution. LEE Kai Seng (HKUST).

Associate each city with a vertex of a graph. Suppose there are X and Y cities to the left and to the right of the river respectively. Then the number of routes (or edges of the graph) in the beginning is $X k=Y k$ so that $X=Y$. We have $X+Y \geq 3$.

After one route between city A and city B is removed, assume the cities can no longer be connected via the remaining routes. Then each of the other cities can only be connected to exactly one of A or B. Then the original graph decomposes into two connected graphs G_{A} and G_{B}, where G_{A} has A as vertex and G_{B} has B as vertex.

Let X_{A} be the number of cities among the X cities on the left sides of the river that can still be connected to A after the route between A and B was removed and similarly for X_{B}, Y_{A}, Y_{B}. Then the number of edges in G_{A} is $X_{A} k-1=Y_{A} k$. Then $\left(X_{A}-\right.$ $\left.Y_{A}\right) k=1$. So $k=1$. Then in the beginning $X=1$ and $Y=1$, contradicting $X+Y \geq 3$.

Olympiad Corner

(continued from page 1)

Problem 4. Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots)
$$

Determine all positive integers that are relatively prime to every term of the sequence.

Problem 5. Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let E and F be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.

Problem 6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

Famous Geometry

 Theorems
(continued from page 2)

Example 5 (2005 Chinese Math Olympiad) A circle meets the three sides $B C, C A, A B$ of triangle $A B C$ at points $D_{1}, D_{2} ; E_{1}, E_{2}$ and F_{1}, F_{2} in turn. The line segments $D_{1} E_{1}$ and $D_{2} F_{2}$ intersect at point L, line segments $E_{1} F_{1}$ and $E_{2} D_{2}$ intersect at point M, line segments $F_{1} D_{1}$ and $F_{2} E_{2}$ intersect at point N. Prove that the three lines $A L$, $B M$ and $C N$ are concurrent.

Solution. Let $P=D_{1} F_{1} \cap D_{2} E_{2}, Q=$ $E_{1} D_{1} \cap E_{2} F_{2}, R=F_{1} E_{1} \cap F_{2} D_{2}$. Applying Pascal's Theorem to E_{2}, E_{1}, $D_{1}, F_{1}, F_{2}, D_{2}$, we get A, L, P are collinear. Applying Pascal's Theorem to $F_{2}, F_{1}, E_{1}, D_{1}, D_{2}, E_{2}$, we get B, M, Q are collinear. Applying Pascal's Theorem to $D_{2}, D_{1}, F_{1}, E_{1}, E_{2}, F_{2}$, we get C, N, R are collinear.

Let $X=E_{2} E_{1} \cap D_{1} F_{2}=C A \cap D_{1} F_{2}, Y=$ $F_{2} F_{1} \cap E_{1} D_{2}=A B \cap E_{1} D_{2}, Z=D_{2} D_{1} \cap$ $F_{1} E_{2}=B C \cap F_{1} E_{2}$. Applying Pascal's Theorem to $D_{1}, F_{1}, E_{1}, E_{2}, D_{2}, F_{2}$, we get P, R, X are collinear. Applying Pascal's Theorem to $E_{1}, D_{1}, F_{1}, F_{2}, E_{2}$, D_{2}, we get Q, P, Y are collinear. Applying Pascal's Theorem to F_{1}, E_{1}, $D_{1}, D_{2}, F_{2}, E_{2}$, we get R, Q, Z are collinear.

For $\triangle A B C$ and $\triangle P Q R$, we have $X=$ $C A \cap R P, Y=A B \cap P Q, Z=B C \cap Q R$. By the converse of Desargues' Theorem, lines $A P=A L, B Q=B M$, $C R=C N$ are concurrent.

