
 

Volume 10, Number 3 August 2005 – September 2005 

Famous Geometry Theorems 

Kin Y. Li 

 
Olympiad Corner 
 
The 2005 International Mathematical 
Olympiad was held in Merida, Mexico 
on July 13 and 14.  Below are the 
problems. 

 
 

Problem 1.    Six points are chosen on 
the sides of an equilateral triangle ABC: 
A , A  on BC; B , B  on CA; C , C  on 
AB.  These points are the vertices of a 
convex hexagon A A B B C C  with 
equal side lengths.  Prove that the lines 
A B , B C  and C A  are concurrent. 
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Problem 2.   Let a1, a2, … be a sequence 
of integers with infinitely many positive 
terms and infinitely many negative 
terms.  Suppose that for each positive 
integer n, the numbers a1, a2, …, an leave 
n different remainders on division by n. 
Prove that each integer occurs exactly 
once in the sequence. 

 
Problem 3.   Let x, y and z be positive 
real numbers such that xyz ≥ 1.  Prove 
that 
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There are many famous geometry 
theorems.  We will look at some of 
them and some of their applications. 
Below we will write P = WX ∩ YZ to 
denote P is the point of intersection of 
lines WX and YZ.  If points A, B, C are 
collinear, we will introduce the sign 
convention: AB/BC = BCAB /  (so if B 
is between A and C, then AB/BC ≥ 0, 
otherwise AB/BC ≤ 0). 

 
Menelaus’ Theorem Points X, Y, Z are 
taken from lines AB, BC, CA (which are 
the sides of △ ABC extended) 
respectively. If there is a line passing 
through X, Y, Z, then 
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Proof   Let L be a line perpendicular to 
the line through X, Y, Z and intersect it 
at O.  Let A’, B’, C’ be the feet of the 
perpendiculars from A, B, C to L 
respectively. Then  
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Multiplying these equations together, 
we get the result. 

 
The converse of Menelaus’ Theorem is 
also true.  To see this, let Z’=XY∩CA. 
Then applying Menelaus theorem to 
the line through X, Y, Z’ and comparing 
with the equation above, we get 
CZ/ZA=CZ’/Z’A. It follows Z=Z’.  

 
Pascal’s Theorem   Let A, B, C, D, E, F 
be points on a circle (which are not 
necessarily in cyclic order). Let 

 
     P=AB∩DE, Q=BC∩EF,  R=CD∩FA. 
 

Then P,Q,R are collinear. 
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Proof Let X = EF ∩ AB, Y = AB ∩ CD, 
Z = CD ∩ EF.  Applying Menelaus’ 
Theorem respectively to lines BC, DE, 
FA cutting △XYZ extended , we have 
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Multiplying these three equations 
together, then using the intersecting 
chord theorem (see vol 4, no. 3, p. 2 of 
Mathematical Excalibur) to get XA·XB 
= XE·XF, YC·YD = YA·YB, ZE·ZF = 
ZC·ZD, we arrive at the equation 
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By the converse of Menelaus’ 
Theorem, this implies P, Q, R are 
collinear. 
 
We remark that there are limiting cases 
of Pascal’s Theorem.  For example, we 
may move A to approach B.  In the 
limit, A and B will coincide and the line 
AB will become the tangent line at B.  
 
Below we will give some examples of 
using Pascal’s Theorem in geometry 
problems. 
 
Example 1  (2001 Macedonian Math 
Olympiad) For the circumcircle of △
ABC, let D be the intersection of the 
tangent line at A with line BC, E be the 
intersection of the tangent line at B with 
line CA and F be the intersection of the 
tangent line at C with line AB.  Prove 
that points D, E, F are collinear. 
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Solution  Applying Pascal’s Theorem 
to A, A, B, B, C, C on the circumcircle, 
we easily get D, E, F are collinear. 
 
Example 2  Let D and E be the 
midpoints of the minor arcs AB and AC 
on the circumcircle of △ ABC, 
respectively.  Let P be on the minor arc 
BC, Q = DP ∩ BA and R = PE ∩ AC.  
Prove that line QR passes through the 
incenter I of △ABC. 
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Solution   Since D is the midpoint of 
arc AB, line CD bisects ∠ ACB. 
Similarly, line EB bisects ∠ABC.  So I 
= CD ∩ EB. Applying Pascal’s 
Theorem to C, D, P, E, B, A, we get I, Q, 
R are collinear.  
 
Newton’s Theorem   A circle is 

inscribed in a quadrilateral ABCD with 

sides AB, BC, CD, DA touch the circle 

at points E, F, G, H respectively. Then 

lines AC, EG, BD, FH are concurrent.  
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Proof.  Let O = EG∩FH and X = 
EH∩FG.  Since D is the intersection of 
the tangent lines at G and at H to the 
circle, applying Pascal’s Theorem to 
E,G,G,F,H,H, we get O, D, X are 
collinear.  Similarly, applying Pascal’s 
Theorem to E, E, H, F, F, G, we get B, X, 
O are collinear.  
 
Then B,O,D are collinear and so lines 
EG, BD, FH are concurrent at O. 
Similarly, we can also obtain lines AC, 
EG, FH are concurrent at O.  Then 
Newton’s Theorem follows.  
 
Example 3  (2001 Australian Math 
Olympiad)  Let A, B, C, A’, B’, C’ be 
points on a circle such that AA’ is 
perpendicular to BC, BB’ is 
perpendicular to CA, CC’ is 
perpendicular to AB.  Further, let D be 
a point on that circle and let DA’ 

intersect BC in A’’, DB’ intersect CA in B’’, 
and DC’ intersect AB in C’’, all segments 
being extended where required.  Prove 
that A’’, B’’, C’’ and the orthocenter of 
triangle ABC are collinear. 
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Solution  Let H be the orthocenter of △
ABC. Applying Pascal’s theorem to A, A’, 
D, C’, C, B, we see H, A’’, C’’ are collinear. 
Similarly, applying Pascal’s theorem to B’, 
D, C’, C, A, B, we see B’’, C’’, H are 
collinear. So A’’, B’’, C’’, H are collinear. 
 
Example 4  (1991 IMO unused problem) 
Let ABC be any triangle and P any point in 
its interior.  Let P1, P2 be the feet of the 
perpendiculars from P to the two sides AC 
and BC. Draw AP and BP and from C drop 
perpendiculars to AP and BP.  Let Q1 and 
Q2 be the feet of these perpendiculars.  If 
Q2≠P1 and Q1≠P2, then prove that the lines 
P1Q2, Q1P2 and AB are concurrent. 
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Solution  Since ∠ CP1P, ∠ CP2P, ∠
CQ2P, ∠CQ1P are all right angles, we see 
that the points C, Q1, P1, P, P2, Q2 lie on a 
circle with CP as diameter.  Note A = CP1 
∩ PQ1 and B = Q2P ∩ P2C.  Applying 
Pascal’s theorem to C, P1, Q2, P, Q1, P2, 
we see X = P1Q2 ∩ Q1P2 is on line AB. 
 
Desargues’ Theorem  For △ABC and △
A’B’C’, if lines AA’, BB’, CC’ concur at a 
point O, then points P, Q, R are collinear, 
where P = BC ∩ B’C’, Q = CA ∩ C’A’, R 
= AB ∩ A’B’. 
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Proof  Applying Menelaus’ Theorem 
respectively to line A’B’ cutting △OAB 
extended, line B’C’ cutting △ OBC 
extended and the line C’A’ cutting △OCA 
extended, we have 

,1
'

'
'

'
−=⋅⋅

OB
BB

RB
AR

AA
OA  

,1
'

'
'

'
−=⋅⋅

OC
CC

PC
BP

BB
OB  

.1
'

'
'

'
−=⋅⋅

QA
CQ

CC
OC

OA
AA  

Multiplying these three equations,  
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By the converse of Menelaus’ Theorem, 
this implies P, Q, R are collinear. 
 
We remark that the converse of 
Desargues’ Theorem is also true.  We 
can prove it as follow: let O = BB’ ∩ 
CC’. Consider △RBB’ and △QCC’.  
Since lines RQ, BC, B’C’ concur at P, 
and A = RB ∩ QC, O = BB’ ∩ CC’, A’ 
= BR’ ∩ C’Q, by Desargues’ Theorem, 
we have A,O,A’ are collinear.  
Therefore, lines AA’, BB’, CC’ concur 
at O. 
 
Brianchon’s Theorem  Lines AB, BC, 
CD, DE, EF, FA are tangent to a circle 
at points G, H, I, J, K, L (not necessarily 
in cyclic order).  Then lines AD, BE, 
CF are concurrent. 
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Proof  Let M = AB ∩ CD, N = DE ∩ 
FA. Applying Newton’s Theorem to 
quadrilateral AMDN, we see lines AD, 
IL, GJ concur at a point A’.  Similarly, 
lines BE, HK, GJ concur at a point B’ 
and lines CF, HK, IL concur at a point 
C’.  Note line IL coincides with line 
A’C’.  Next we apply Pascal’s Theorem 
to G, G, I, L, L, H and get points A, O, P 
are collinear, where O = GI ∩ LH and 
P = IL ∩ HG.  Applying Pascal’s 
Theorem again to H, H, L, I, I, G, we 
get C, O, P are collinear.  Hence A, C, P 
are collinear. 
 
Now G = AB ∩ A’B’, H = BC ∩ B’C’, 
P = CA ∩ IL = CA ∩ C’A’.  Applying 
the converse of Desargues’ Theorem to 
△ABC and △A’B’C’, we get lines AA’ 
= AD, BB’ = BE, CC’ = CF are 
concurrent. 

(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 
submitting solutions is October 30, 
2005. 
 
Problem 231.  On each planet of a star 
system, there is an astronomer 
observing the nearest planet.  The 
number of planets is odd, and pairwise 
distances between them are different. 
Prove that at least one planet is not 
under observation. 
(Source: 1966 Soviet Union Math 
Olympiad) 
 
Problem 232.  B and C are points on 
the segment AD.  If AB = CD, prove 
that PA + PD ≥ PB + PC for any point 
P. 
(Source: 1966 Soviet Union Math 
Olympiad) 
 
Problem 233.  Prove that every 
positive integer not exceeding n! can 
be expressed as the sum of at most n 
distinct positive integers each of which 
is a divisor of n!.  
 
Problem 234.  Determine all 
polynomials P(x) of the smallest 
possible degree with the following 
properties:  
 
a)  The coefficient of the highest power 
is 200. 
b)  The coefficient of the lowest power 
for which it is not equal to zero is 2. 
c)  The sum of all its coefficients is 4. 
d)  P(−1) = 0, P(2) = 6 and P(3) = 8. 
 
(Source: 2002 Austrian National 
Competition)  
 
Problem 235.  Forty-nine students 
solve a set of three problems.  The 
score for each problem is an integer 
from 0 to 7.  Prove that there exist two 
students A and B such that, for each 
problem, A will score at least as many 
points as B. 
 

***************** 
Solutions 

**************** 

 
Problem 226.  Let z1, z2, …, zn be 
complex numbers satisfying  
 

|z1| + |z2| + ⋯ + |zn| = 1. 
 
Prove that there is a nonempty subset of 
{z1, z2, …, zn} the sum of whose elements 
has modulus at least 1/4.
 
Solution.  LEE Kai Seng (HKUST). 

Let zk =ak + bki with ak , bk real.  Then |zk | 

≤ |ak | + |bk|.  So 
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Hence, one of the four sums is at least 1/4, 
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Problem 227.  For every integer n ≥ 6, 
prove that  
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Comments.  In the original statement of 
the problem, the displayed inequality was 
stated incorrectly.  The < sign should be an 
≤ sign. 
 
Solution. CHAN Pak Woon (Wah Yan 
College, Kowloon, Form 7), Roger CHAN 
(Vancouver, Canada) and LEE Kai Seng 
(HKUST). 
 
For  n = 6, 7, …, let 
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then 

j

n

j
k

n

k
n jn

n
kn

na
2
11

2
1

1
1 1

0
1

1
1 ⋅

−
+

=⋅
−+
+

= ∑∑
−

=
−

=
+

 

       
1

1

1 2
1

2
11

−

−

=

⋅
−

+
+

+
= ∑ j

n

j jn
n

n
n

n
n  

       .
5

16
5
81

6
7

2
11

<⎟
⎠
⎞

⎜
⎝
⎛ +≤⎟

⎠
⎞

⎜
⎝
⎛ +

+
= na

n
n  

The desired inequality follows by 
mathematical induction. 
 
Problem 228.  In △ABC, M is the foot of 
the perpendicular from A to the angle 

bisector of ∠ BCA.  N and L are 
respectively the feet of perpendiculars 
from A and C to the bisector of ∠ABC. 
Let F be the intersection of lines MN 
and AC.  Let E be the intersection of 
lines BF and CL.  Let D be the 
intersection of lines BL and AC.  
 
Prove that lines DE and MN are 
parallel.  
 
Solution. Roger CHAN (Vancouver, 
Canada). 
 
Extend AM to meet BC at G and extend 
AN to meet BC at I.  Then AM = MG, AN 
= NI and so lines MN and BC are parallel. 
 
From AM = MG, we get AF = FC.  
Extend CL to meet line AB at J.  Then JL 
= LC.  So lines LF and AB are parallel. 
 
Let line LF intersect BC at H.  Then BH = 
HC.  In △BLC, segments BE, LH and CD 
concur at F.  By Ceva’s theorem (see vol. 2, 
no. 5, pp. 1-2 of Mathematical Excalibur), 

.1=⋅⋅
DB
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Since BH = HC, we get CE/EL = 
DB/LD, which implies lines DE and 
BC are parallel.  Therefore, lines DE 
and MN are parallel. 
 
Problem 229.  For integer n ≥ 2, let a1, 
a2, a3, a4 be integers satisfying the 
following two conditions: 
 
(1) for i = 1, 2, 3, 4, the greatest 
common divisor of n and ai is 1 and 
(2) for every k = 1, 2, …, n – 1, we have 
 

(ka1)n + (ka2)n + (ka3)n + (ka4)n = 2n, 
 
where (a)n denotes the remainder when 
a is divided by n. 
 
Prove that (a1)n, (a2)n, (a3)n, (a4)n can be 
divided into two pairs, each pair having 
sum equals n. 
(Source: 1992 Japanese Math 
Olympiad) 
 
Solution.  (Official Solution) 
 
Since n and a1 are relatively prime, the 
remainders (a1)n, (2a1)n,, …, ((n-1)a1)n 
are nonzero and distinct.  So  there is a 
k among 1, 2, …, n − 1 such that (ka1)n 
= 1.  Note that such k is relatively 
prime to n.  If (ka1)n + (kaj)n = n, then 
ka1 + kaj ≡ 0 (mod n) so that a1 + aj ≡ 0 
(mod n) and (a1)n + (aj)n = n.  Thus, to 
solve the problem, we may replace ai 
by (kai)n and assume 1 = a1 ≤ a2 ≤ a3 ≤ 
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a4 ≤ n − 1.  By condition (2), we have  
 
 
             1+a2+a3+a4=2n.                  (A) 

F
 

or k = 1, 2, …, n − 1, let  

fi(k) = [kai/n] − [(k − 1)ai/n], 
 
then fi(k) ≤ (kai/n) + 1 − (k − 1)ai/n = 1 
+ (ai/n) < 2.  So fi(k) = 0 or 1.  Since x = 
[x/n]n + (x)n, subtracting the case x = 
kai from the case x = (k − 1)ai, then 
summing i = 1, 2, 3, 4, using condition 
2) and (A), we get  (

 
f1(k) + f2(k) + f3(k) + f4(k) = 2. 

 
Since a1 = 1, we see f1(k)=0 and exactly 
two of f2(k), f3(k), f4(k) equal 1.       (B) 
 
Since ai<n, fi(2) = [2ai/n].  Since a2 ≤ a3 
≤ a4 < n, we get f2(2) = 0, f3(2) = f4(2) = 
1, i.e. 1 = a1 ≤ a2 < n/2 < a3 ≤ a4 ≤ n − 1. 
 
Let t2 = [n/a2] + 1, then f2(t2) = [t2a2/n] 
− [(t2 − 1)a2/n] = 1 − 0 = 1.  If 1 ≤ k < t2, 
then k < n/a2, f2(k) = [ka2/n] − [(k − 1) 
a2/n] = 0 − 0 = 0.  Next if f2(j) = 1, then 
f2(k) = 0 for j < k < j + t2 − 1 and 
exactly one of f2(j + t2 − 1) or f2(j + t2) = 
1.                                                      (C) 
 
Similarly, for i = 3, 4, let ti = [n/(n − ai)] 
+ 1, then fi(ti) = 0 and fi(k) = 1 for 1 ≤ k 
< ti.  Also, if fi(j) = 0, then fi(k) = 1 for j 
< k < j + ti − 1 and exactly one of fi(j + 
t  − 1) or fi
 

i(j + ti) = 0.                       (D) 

Since f3(t3) = 0, by (B), f2(t3) = 1.  If k < 
t3≤ t4, then by (D), f3(k) = f4(k) = 1.  So 
by (B), f2(k) = 0.  Then by (C), t2 = t3. 
 
Assume t4 < n.  Since n/2 < a4 < n, we 
get f4(n − 1) = (a4 − 1) − (a4 − 2) = 1 ≠ 0 
= f4(t4) and so t4 ≠ n−1.  Also, f4(t4) = 0 
implies f2(t4) = f3(t4) = 1 by (B).  
 
Since f3(t3) = 0 ≠ 1 = f3(t4), t3 ≠ t4.  Thus 
t2 = t3 < t4.  Let s < t4 be the largest 
integer such that f2(s) = 1.  Since f2(t4) = 
1, we have t4 = s + t2 − 1 or t4 = s + t2. 
Since f2(s) = f4(s) = 1, we get f3(s) = 0. 
As t2 = t3, we have t4 = s + t3 − 1 or t4 = 
s + t3.  Since f3(s) = 0 and f3(t4) = 1, by 
(D), we get f3(t4 − 1) = 0 or f3(t4 + 1) = 0. 
Since f2(s) = 1, f2(t4) = 1 and t2 > 2, by 
(C), we get f2(s + 1) = 0 and f2(t4 + 1) = 
0. So s + 1 ≠ t4, which implies f2(t4 − 1) 
= 0 by the definition of s.  Then k = t4 − 
1 or t4 + 1 contradicts (B).  
  
So t4 ≥ n, then n − a4 = 1. We get a1 + a4 
= n = a2 + a3. 
 
Problem 230.  Let k be a positive 
integer.  On the two sides of a river, 
there are in total at least 3 cities.  From 
each of these cities, there are exactly k 

routes, each connecting the city to a 
distinct city on the other side of the river.  
Via these routes, people in every city can 
reach any one of the other cities.  
 
Prove that if any one route is removed, 
people in every city can still reach any one 
of the other cities via the remaining 
routes. 
(Source: 1996 Iranian Math Olympiad, 
Round 2)  
 
Solution.  LEE Kai Seng (HKUST). 
 
Associate each city with a vertex of a 
graph.  Suppose there are X and Y cities to 
the left and to the right of the river 
respectively.  Then the number of routes 
(or edges of the graph) in the beginning is 
Xk = Yk so that X = Y.  We have X + Y ≥ 3. 
 
After one route between city A and city B 
is removed, assume the cities can no 
longer be connected via the remaining 
routes.  Then each of the other cities can 
only be connected to exactly one of A or B.  
Then the original graph decomposes into 
two connected graphs GA and GB, where 
GA has A as vertex and GB has B as vertex.
 
Let XA be the number of cities among the X 
cities on the left sides of the river that can 
still be connected to A after the route 
between A and B was removed and 
similarly for XB, YA, YB.  Then the number 
of edges in GA is XAk-1 = YAk.  Then (XA - 
YA)k = 1.  So k = 1.  Then in the beginning 
X = 1 and Y = 1, contradicting X + Y ≥ 3. 
 
 

 
 
Olympiad Corner 

(continued from page 1) 
 
Problem 4.  Consider the sequence a1, 
a2, … defined by  
 

an = 2n + 3n + 6n − 1  (n = 1, 2, …) 
 
Determine all positive integers that are 
relatively prime to every term of the 
sequence. 
            
Problem 5.  Let ABCD be a given convex 
quadrilateral with sides BC and AD equal 
in length and not parallel.  Let E and F be 
interior points of the sides BC and AD 
respectively such that BE = DF.  The lines 
AC and BD meet at P, the lines BD and EF 
meet at Q, the lines EF and AC meet at R. 
Consider all the triangles PQR as E and F 
vary.  Show that the circumcircles of these 
triangles have a common point other than 
P. 

 
Problem 6.  In a mathematical 
competition 6 problems were posed to 
the contestants.  Each pair of problems 
was solved by more than 2/5 of the 
contestants.  Nobody solved all 6 
problems.  Show that there were at 
least 2 contestants who each solved 
exactly 5 problems.  
 

 
 
Famous Geometry 
Theorems 

(continued from page 2) 
 
Example 5  (2005 Chinese Math 
Olympiad) A circle meets the three 
sides BC, CA, AB of triangle ABC at 
points D1, D2; E1, E2 and F1, F2 in turn.  
The line segments D1E1 and D2F2 
intersect at point L, line segments E1F1 
and E2D2 intersect at point M, line 
segments F1D1 and F2E2 intersect at 
point N. Prove that the three lines AL, 
BM and CN are concurrent. 

B
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A
F1 E2

F2

D1
D2

E1

L

P

 
Solution.  Let P = D1F1  ∩ D2E2, Q = 
E1D1 ∩ E2F2, R = F1E1 ∩ F2D2. 
Applying Pascal’s Theorem to E2, E1, 
D1, F1, F2, D2, we get A, L, P are 
collinear.  Applying Pascal’s Theorem 
to F2, F1, E1, D1, D2, E2, we get B, M, Q 
are collinear.  Applying Pascal’s 
Theorem to D2, D1, F1, E1, E2, F2, we 
get C, N, R are collinear. 
 
Let X = E2E1 ∩ D1F2 = CA ∩ D1F2, Y = 
F2F1 ∩ E1D2 = AB ∩ E1D2, Z = D2D1 ∩ 
F1E2 = BC ∩ F1E2.  Applying Pascal’s 
Theorem to D1, F1, E1, E2, D2, F2, we 
get P, R, X are collinear.  Applying 
Pascal’s Theorem to E1, D1, F1, F2, E2, 
D2, we get Q, P, Y are collinear. 
Applying Pascal’s Theorem to F1, E1, 
D1, D2, F2, E2, we get R, Q, Z are 
collinear. 
 
For △ABC and △PQR, we have X = 
CA ∩ RP, Y = AB ∩ PQ, Z = BC ∩ QR. 
By the converse of Desargues’ 
Theorem, lines AP = AL, BQ = BM, 
CR = CN are concurrent. 
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