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Olympiad Corner 
 
Below was the Find Round of the 36th 
Austrian Math Olympiad 2005. 

 
Part 1 (May 30, 2005) 
 
Problem 1.   Show that an infinite 
number of multiples of 2005 exist, in 
which each of the 10 digits 0,1,2,…,9 
occurs the same number of times, not 
counting leading zeros. 
 
Problem 2.   For how many integer 
values of a with |a| ≤ 2005 does the 
system of equations x2 = y + a, y2 = x + a 
have integer solutions? 
 
Problem 3.   We are given real numbers 
a, b and c and define sn as the sum sn = an 

+ bn + cn of their n-th powers for 
non-negative integers n.  It is known that 
s1 = 2, s2 = 6 and s3 = 14 hold.  Show that 
 

8|| 11
2 =⋅− +− nnn sss  

 
holds for all integers n > 1. 
 
Problem 4.  We are given two 
equilateral triangles ABC and PQR with 
parallel sides, “one pointing up” and 
“one pointing down.”  The common area 
of the triangles’ interior is a hexagon.  
Show that the lines joining opposite 
corners of this hexagon are concurrent. 
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In general, angle bisectors of a triangle 
do not bisect the sides opposite the 
angles.  However, angle bisectors 
always bisect the arcs opposite the 
angles on the circumcircle of the 
triangle! In math competitions, this fact 
is very useful for problems concerning 
angle bisectors or incenters of a triangle 
involving the circumcircle.  Recall that 
the incenter of a triangle is the point 
where the three angle bisectors concur.  
 
Theorem.  Suppose the angle bisector of 
∠ BAC intersect the circumcircle of 
∆ABC at X ≠ A.  Let I be a point on the 
line segment AX.  Then I is the incenter 
of ∆ABC if and only if XI = XB = XC. 

A

B C
X

I

 
 

Proof.  Note ∠BAX =∠CAX =∠CBX. 
So XB = XC.  Then  

 
         I is the incenter of ∆ABC  
  ⇔ ∠CBI =∠ABI 
  ⇔ ∠IBX −∠CBX =∠BIX −∠BAX

     ⇔ ∠IBX = ∠BIX 
     ⇔  XI = XB = XC. 
 

Example 1. (1982 Australian Math 
Olympiad)  Let ABC be a triangle, and 
let the internal bisector of the angle A 
meet the circumcircle again at P.  
Define Q and R similarly.  Prove that AP 
+ BQ + CR > AB + BC + CA. 

A
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Solution.  Let I be the incenter of ∆ABC. 
By the theorem, we have 2IR = AR + BR 
> AB and similarly 2IP > BC, 2IQ > CA. 
Also  AI + BI > AB, BI + CI > BC  and 
CI + AI > CA.  Adding all these 
nequalities together, we get i

 
2(AP + BQ + CR) > 2(AB + BC + CA). 

 
Example 2. (1978 IMO)  In ABC, AB = 
AC. A circle is tangent internally to the 
circumcircle of ABC and also to the 
sides AB, AC at P, Q, respectively. 
Prove that the midpoint of segment PQ 
is the center of the incircle of ∆ABC. 
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Solution.  Let I be the midpoint of line 
segment PQ and X be the intersection of 
the angle bisector of ∠BAC with the arc 
BC not containing A.  
 
By symmetry, AX is a diameter of the 
circumcircle of ∆ABC and X is the 
midpoint of the arc PXQ on the inside 
circle, which implies PX bisects 

QPB∠ .  Now ∠ABX = 90˚ = ∠PIX 
so that X, I, P, B are concyclic.  Then 

 
∠IBX =∠IPX =∠BPX =∠BIX. 

 
So XI = XB.  By the theorem, I is the 
incenter of ∆ABC. 
 
Example 3.  (2002 IMO)  Let BC be a 
diameter of the circle Γ with center O.  
Let A be a point on Γ such that 0˚ < 

AOB∠  < 120˚.  Let D be the midpoint 
of the arc AB not containing C.  The line 
through O parallel to DA meets the line 
AC at J.  The perpendicular bisector of 
OA meets Γ at E and at F.  Prove that J is 
the incenter of the triangle CEF.
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Solution.  The condition ∠ AOB < 
120˚ ensures I is inside ∆CEF (when 
∠ AOB increases to 120˚, I will 
coincide with C).  Now radius OA and 
chord EF are perpendicular and bisect 
each other.  So EOFA is a rhombus.  
Hence A is the midpoint of arc EAF.  
Then CA bisects ∠ECF.  Since OA = 
OC, ∠AOD = 1/2∠AOB = ∠OAC.  
Then DO is parallel to AJ.  Hence 
ODAJ is a parallelogram.  Then AJ = 
DO = EO = AE.  By the theorem, J is 
the incenter of ∆CEF. 
 
Example 4. (1996 IMO)  Let P be a 
point inside triangle ABC such that 
 
∠APB −∠ACB = ∠APC −∠ABC. 

 
Let D, E be the incenters of triangles 
APB, APC respectively.  Show that AP, 
BD and CE meet at a point. 
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Solution.  Let lines AP, BP, CP 
intersect the circumcircle of ∆ABC 
again at F, G, H respectively.  Now 
 

∠APB −∠ACB =∠FPG −∠AGB 
                              =∠FAG. 
 
Similarly, ∠APC − ∠ABC = ∠FAH.  
So AF bisects ∠HAG.  Let K be the 
incenter of ∆HAG.  Then K is on AF 
and lines HK, GK pass through the 
midpoints I, J of minor arcs AG, AH 
respectively.  Note lines BD, CE also 
pass through I, J as they bisect ∠ABP, 
∠ACP respectively. 
 
Applying Pascal’s theorem (see vol.10, 
no. 3 of Math Excalibur) to B, G, J, C, 

H, I on the circumcircle, we see that 
P=BG∩CH, K=GJ∩HI and BI∩CJ= 
BD∩CE are collinear. Hence, BD∩CE is 
on line PK, which is the same as line AP. 
 
Example 5. (2006 APMO)  Let A, B be 
two distinct points on a given circle O and 
let P be the midpoint of line segment AB.  
Let O1 be the circle tangent to the line AB 
at P and tangent to the circle O.  Let ℓ be 
the tangent line, different from the line AB, 
to O1 passing through A.  Let C be the 
intersection point, different from A, of ℓ 
and O.  Let Q be the midpoint of the line 
segment BC and O2 be the circle tangent 
to the line BC at Q and tangent to the line 
segment AC.  Prove that the circle O2 is 
tangent to the circle O. 
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Solution.  Let the perpendicular to AB 
through P intersect circle O at N and M 
with N and C on the same side of line AB.  
By symmetry, segment NP is a diameter 
of the circle of O1 and its midpoint L is the 
center of O1.  Let line AL intersect circle O 
again at Z.  Let line ZQ intersect line CM 
at J and circle O again at K.  
 
Since AB and AC are tangent to circle O1, 
AL bisects ∠ CAB so that Z is the 
midpoint of arc BC.  Since Q is the 
midpoint of segment BC, ∠ZQB = 90˚ =
∠LPA and ∠JQC = 90˚ =∠MPB.  Next 
 

∠ZBQ =∠ZBC =∠ZAC =∠LAP. 
 
So ∆ZQB, ∆LPA are similar.  Since M is 
the midpoint of arc AMB,  
 

∠JCQ =∠MCB =∠MCA =∠MBP. 
 
So ∆JQC, ∆MPB are similar. 
 
By the intersecting chord theorem, AP·BP 
= NP·MP = 2LP·MP.  Using the similar 
triangles above, we have 

.
2
1

CQBQ
JQZQ
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MPLP
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⋅

=
⋅
⋅

=  

By the intersecting chord theorem, KQ·ZQ 
= BQ·CQ so that 
 

KQ = (BQ·CQ)/ZQ = 2JQ. 

This implies J is the midpoint of KQ.  
Hence the circle with center J and 
diameter KQ is tangent to circle O at K 
and tangent to BC at Q.  Since J is on 
the bisector of ∠BCA, this circle is 
also tangent to AC.  So this circle is O2. 
 
Example 6. (1989 IMO)  In an 
acute-angled triangle ABC the internal 
bisector of angle A meets the 
circumcircle of the triangle again at A1.  
Points B1 and C1 are defined similarly.  
Let A0 be the point of intersection of 
the line AA1 with the external bisectors 
of angles B and C. Points B0 and C0 are 
defined similarly.  Prove that: 
 
(i)  the area of the triangle A0B0C0 is 
twice the area of the hexagon 
AC1BA1CB1,  
(ii)  the area of the triangle A0B0C0 is at 
least four times the area of the triangle 
ABC. 
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Solution. (i)  Let I be the incenter of 
∆ABC.  Since internal angle bisector 
and external angle bisector are 
perpendicular, we have ∠B0BA0 = 90˚.  
By the theorem, A1I = A1B.  So A1 must 
be the midpoint of the hypotenuse A0I 
of right triangle IBA0.  So the area of 
∆BIA0 is twice the area of ∆BIA1.   
Cutting the hexagon AC1BA1CB1 into 
six triangles with common vertex I and 
applying a similar area fact like the last 
statement to each of the six triangles, 
we get the conclusion of (i). 
 
(ii)  Using (i), we only need to show the 
area of hexagon AC1BA1CB1 is at least 
twice the area of ∆ABC. 
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(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 
submitting solutions is August 16, 
2006. 
 
Problem 251.  Determine with proof 
the largest number x such that a cubical 
gift of side x can be wrapped 
completely by folding a unit square of 
wrapping paper (without cutting). 
 
Problem 252.   Find all polynomials 
f(x) with integer coefficients such that 
for every positive integer n, 2n − 1 is 
divisible by f(n).  
 
Problem 253.  Suppose the bisector of 
∠BAC intersect the arc opposite the 
angle on the circumcircle of ∆ABC at 
A1.  Let B1 and C1 be defined similarly.  
Prove that the area of ∆A1B1C1 is at 
least the area of ∆ABC. 
 
Problem 254.  Prove that if a, b, c > 0, 
hen t

 
2)()( cbacbaabc +++++  

                         .)(34 cbaabc ++≥  
 
Problem 255.  Twelve drama groups 
are to do a series of performances (with 
some groups possibly making repeated 
performances) in seven days.  Each 
group is to see every other group’s 
performance at least once in one of its 

ay-offs.  d
 
Find with proof the minimum total 
number of performances by these 
groups. 
 

***************** 
Solutions 

**************** 
 
Problem 246.  A spy plane is flying at 
the speed of 1000 kilometers per hour 
along a circle with center A and radius 
10 kilometers.  A rocket is fired from A 
at the same speed as the spy plane such 
that it is always on the radius from A to 
the spy plane.  Prove such a path for the 
rocket exists and find how long it takes 
for the rocket to hit the spy plane. 

(Source: 1965 Soviet Union Math 
Olympiad) 
 
Solution.  Jeff CHEN (Virginia, USA), 
Koyrtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher), G.R.A. 20 Math 
Problem Group (Roma, Italy) and Alex O 
Kin-Chit (STFA Cheng Yu Tung 

econdary School). S
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Let the spy plane be at Q when the rocket 
was fired.  Let L be the point on the circle 
obtained by rotating Q by 90˚ in the 
forward direction of motion with respect 
to the center A.  Consider the semicircle 
with diameter AL on the same side of line 
AL as Q.  We will show the path from A to 
L along the semicircle satisfies the 
conditions.  
 
For any point P on the arc QL, let the 
radius AP intersect the semicircle at R.  
Let O be the midpoint of AL.  Since  
 

∠QAP =∠RLA = 1/2∠ROA 
 
and AL = 2AO, the length of arc AR is the 
same as the length of arc QP.  So the 
conditions are satisfied. 
Finally, the rocket will hit the spy plane at 
L after 5π/1000 hour it was fired. 
 
Comments:  One solver guessed the path 
should be a curve and decided to try a 
circular arc to start the problem.  The other 
solvers derived the equation of the path by 
a differential equation as follows: using 
polar coordinates, since the spy plane has 
a constant angular velocity of 1000/10 = 
100 rad/sec, so at time t, the spy plane is at 
(10, 100t) and the rocket is at (r(t), θ(t)). 
Since the rocket and the spy plane are on 
the same radius, so θ(t) = 100t.  Now they 
have the same speed, so 

. 10))(')(())('( 622 =+ ttrtr θ

Then  

.  100
)(100

)('
2
=

− tr
tr

Integrating both sides from 0 to t, we get 
the equation r = 10 sin(100t) = 10 sin θ, 
which describes the path above. 
 
Problem 247.  (a)  Find all possible 
positive integers k ≥ 3 such that there are k 
positive integers, every two of them are 

not relatively prime, but every three of 
them are relatively prime. 
 
(b)  Determine with proof if there 
exists an infinite sequence of positive 
integers satisfying the conditions in (a) 
bove. a

 
(Source: 2003 Belarussian Math 
Olympiad) 
 
Solution. G.R.A. 20 Math Problem 
Group (Roma, Italy) and YUNG Fai. 
 
(a)  We shall prove by induction that the 
conditions are true for every positive 
integer k ≥ 3.  
 
For k = 3, the numbers 6, 10, 15 satisfy 
the conditions.  Assume it is true for 
some k ≥ 3 with the numbers being a1, 
a2, …, ak.  Let p1, p2, …, pk be distinct 
prime numbers such that each pi is 
greater than a1a2…ak.  For I = 1 to k, let 
bi  

= aipi and let bk+1= p1p2…pk.  Then 

gcd(bi, bj)=gcd(ai, aj) >1 for 1≤ i < j ≤k, 
 
gcd(bi, bk+1) = pi > 1 for 1 ≤ i ≤ k,   
 
gcd(bh, bi, bj) = gcd(ah, ai, aj) = 1  
 
 
          for 1≤ h ≤ i < j ≤ k and 

gcd(bi, bj, bk+1) = 1 for 1 ≤ i < j ≤ k, 
 
completing the induction. 
 
(b)  Assume there are infinitely many 
positive integers a1, a2, a3, … satisfying 
the conditions in (a).  Let a1 have 
exactly m prime divisors.  For  i = 2 to 
m + 2, since each of the m + 1 numbers 
gcd(a1, ai) is divisible by one of these 
m primes, by the pigeonhole principle, 
there are i, j with 2 ≤ i < j ≤ m + 2 such 
that  gcd(a1, ai) and gcd(a1, aj) are 
divisible by the same prime.  Then 
gcd(a1, ai, aj) > 1, a contradiction. 

 
Commended solvers: CHAN Nga Yi 
(Carmel Divine Grace Foundation 
Secondary School, Form 6) and 
CHAN Yat Sing (Carmel Divine 
Grace Foundation Secondary School, 
Form 6). 
 
Problem 248.  Let ABCD be a convex 
quadrilateral such that line CD is 
tangent to the circle with side AB as 
diameter.  Prove that line AB is tangent 
to the circle with side CD as diameter if 
and only if lines BC and AD are 
parallel. 
 
Solution. Jeff CHEN (Virginia, USA) 
and Koyrtis G. CHRYSSOSTOMOS 
(Larissa, Greece, teacher). 
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Let E be the midpoints of AB.  Since 
CD is tangent to the circle, the distance 
from E to line CD is h1 = AB/2.  Let F 
be the midpoint of CD and let h2 be the 
distance from F to line AB.  Observe 
that the areas of ∆CEF and ∆DEF = 
CD·AB/8.  Now  
 
      line AB is tangent to the circle  
           with side CD as diameter  
⇔ h2=CD/2  
⇔ areas of ∆AEF, ∆BEF, ∆CEF and    
            ∆DEF are equal to AB·CD/8  
⇔ AD∥EF, BC∥EF  
⇔ AD∥BC. 
 
Problem 249.  For a positive integer n, 

if a1,⋯, an, b1, ⋯, bn are in [1,2] and 
 then prove 

that 

,22
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Solution.  Jeff CHEN (Virginia, USA). 
 
F
 

or x, y in [1,2], we have  

               1/2 ≤ x/y ≤2   
      ⇔  y/2 ≤ x ≤ 2y 
      ⇔  (y/2 − x)(2y − x) ≤ 0  
 
 
     ⇔  x2 + y2 ≤ 5xy/2.  

Let x = ai and y = bi, then ai
2 + bi

2 ≤ 
5aibi/2.  Summing and manipulating, 
we get  
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Let x = (ai

3/bi)1/2 and y = (aibi)1/2.  Then 
x/y = ai/bi in [1,2].  So ai

3/bi + aibi≤ 
5ai

2/2.  
Summing, we get 
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Adding the two displayed inequalities, 
we get 
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Problem 250.  Prove that every region 
with a convex polygon boundary cannot 
be dissected into finitely many regions 
with nonconvex quadrilateral boundaries. 
 
Solution.  YUNG Fai. 
 
Assume the contrary that there is a 
dissection of the region into nonconvex 
quadrilateral R1, R2, …, Rn.  For a 
nonconvex quadrilateral Ri, there is a 
vertex where the angle is θi > 180˚, which 
we refer to as the large vertex of the 
quadrilateral.  The three other vertices, 
where the angles are less than 180˚ will be 
referred to as small vertices.  
 
Since the boundary of the region is a 
convex polygon, all the large vertices are 
in the interior of the region.  At a large 
vertex, one angle is θi > 180˚, while the 
remaining angles are angles of small 
vertices of some of the quadrilaterals and 
add up to 360˚ − θi.  Now  

∑
=

−
n

i
i

1

)360( θo  

accounts for all the angles associated with 
all the small vertices.  This is a 
contradiction since this will leave no more 
angles from the quadrilaterals to form the 
angles of the region. 
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Part 2, Day 1  (June 8, 2005) 
 
Problem 1.  Determine all triples of 
positive integers (a,b,c), such that a + b +c 
is the least common multiple of a, b and c. 
 
Problem 2.  Let a, b, c, d be positive real 
numbers.  Prove 

.1111
3333 dcbaabcd

dcba
+++≤

+++  

 
Problem 3.  In an acute-angled triangle 
ABC, circle k1 with diameter AC and k2 
with diameter BC are drawn.  Let E be the 
foot of B on AC and F be the foot of A on 
BC.  Furthermore, let L and N be the 
points in which the line BE intersects with 
k1 (with L lying on the segment BE) and K 
and M be the points in which the line AF 
intersects with k2 (with K on the segment 
AF).  Prove that KLMN is a cyclic 
quadrilateral. 
 
Part 2, Day 2  (June 9, 2005) 
 

Problem 4.  The function f is defined 
for all integers {0, 1, 2, …, 2005}, 
assuming non-negative integer values 
in each case.  Furthermore, the 
following conditions are fulfilled for 
all values of x for which the function is 

efined:  d
 

f(2x + 1) = f(2x),    f(3x + 1) = f(3x) 
and   f(5x + 1) = f(5x). 

 
How many different values can the 
unction assume at most? f

 
Problem 5.  Determine all sextuples 
(a,b,c,d,e,f) of real numbers, such that 
the following system of equations is 
ulfilled: f

 
4a=(b+c+d+e)4,  4b=(c+d+e+f)4, 
4c=(d+e+f+a)4,  4d=(e+f+a+b)4, 
4e=(f+a+b+c)4,  4f=(a+b+c+d)4. 

 
Problem 6.  Let Q be a point in the 
interior of a cube.  Prove that an 
infinite number of lines passing 
through Q exists, such that Q is the 
mid-point of the line-segment joining 
the two points P and R in which the line 
and the cube intersect. 
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 (continued from page 2) 
 
Let H be the orthocenter of ∆ABC.  Let 
line AH intersect BC at D and the 
circumcircle of ∆ABC again at A2. Note 
 
        ∠ A2BC = ∠A2AC  
                       = ∠DAC 
                       =  90˚ −∠ACD  
                       = ∠HBC.  
 
Similarly, we have ∠A2CB = ∠HCB.  
Then ∆BA2C ≅ ∆BHC.  Since A1 is the 
midpoint of arc BA1C, it is at least as 
far from chord BC as A2.  So the area of 
∆ BA1C is at least the area of ∆ BA2C.  
Then the area of quadrilateral BA1CH 
is at least twice the area of ∆BHC. 
 
Cutting hexagon AC1BA1CB1 into three 
quadrilaterals with common vertex H 
and comparing with cutting ∆ABC into 
three triangles with common vertex H 
in terms of areas, we get the conclusion 
of (ii). 
 
Remarks.  In the solution of (ii), we 
saw the orthocenter H of ∆ABC has the 
property that ∆BA2C ≅ ∆BHC (hence, 
also HD = A2D).  These are useful facts 
for problems related to the orthocenters 
involving the circumcircles. 
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