Mathematical Excalibur

Olympiad Corner

Below was the Find Round of the 36th Austrian Math Olympiad 2005.

Part 1 （May 30，2005）

Problem 1．Show that an infinite number of multiples of 2005 exist，in which each of the 10 digits $0,1,2, \ldots, 9$ occurs the same number of times，not counting leading zeros．

Problem 2．For how many integer values of a with $|a| \leq 2005$ does the system of equations $x^{2}=y+a, y^{2}=x+a$ have integer solutions？
Problem 3．We are given real numbers a, b and c and define s_{n} as the sum $s_{n}=a^{n}$ $+b^{n}+c^{n}$ of their n－th powers for non－negative integers n ．It is known that $s_{1}=2, s_{2}=6$ and $s_{3}=14$ hold．Show that

$$
\left|s_{n}^{2}-s_{n-1} \cdot s_{n+1}\right|=8
$$

holds for all integers $n>1$ ．
Problem 4．We are given two equilateral triangles $A B C$ and $P Q R$ with parallel sides，＂one pointing up＂and ＂one pointing down．＂The common area of the triangles＇interior is a hexagon． Show that the lines joining opposite corners of this hexagon are concurrent．
（continued on page 4）

Editors：張百康（CHEUNG Pak－Hong），Munsang College，HK高子眉（KO Tsz－Mei）
梁 達 榮（LEUNG Tat－Wing）
李 健 賢（LI Kin－Yin），Dept．of Math．，HKUST
吳 鏡 波（NG Keng－Po Roger），ITC，HKPU
Artist：楊 秀 英（YEUNG Sau－Ying Camille），MFA，CU
Acknowledgment：Thanks to Elina Chiu，Math．Dept．， HKUST for general assistance．

On－line：

http：／／www．math．ust．hk／mathematical＿excalibur／
The editors welcome contributions from all teachers and students．With your submission，please include your name， address，school，email，telephone and fax numbers（if available）．Electronic submissions，especially in MS Word， are encouraged．The deadline for receiving material for the next issue is August 16， 2006.
For individual subscription for the next five issues for the 05－06 academic year，send us five stamped self－addressed envelopes．Send all correspondence to：

Dr．Kin－Yin LI

Department of Mathematics
The Hong Kong University of Science and Technology Clear Water Bay，Kowloon，Hong Kong

Fax：（852） 23581643
Email：makyli＠ust．hk

Angle Bisectors Bisect Arcs

Kin Y．Li

In general，angle bisectors of a triangle do not bisect the sides opposite the angles．However，angle bisectors always bisect the arcs opposite the angles on the circumcircle of the triangle！In math competitions，this fact is very useful for problems concerning angle bisectors or incenters of a triangle involving the circumcircle．Recall that the incenter of a triangle is the point where the three angle bisectors concur．

Theorem．Suppose the angle bisector of $\angle B A C$ intersect the circumcircle of $\triangle A B C$ at $X \neq A$ ．Let I be a point on the line segment $A X$ ．Then I is the incenter of $\triangle A B C$ if and only if $X I=X B=X C$ ．

Proof．Note $\angle B A X=\angle C A X=\angle C B X$ ． So $X B=X C$ ．Then
I is the incenter of $\triangle A B C$

$$
\begin{aligned}
& \Leftrightarrow \angle C B I=\angle A B I \\
& \Leftrightarrow \angle I B X-\angle C B X=\angle B I X-\angle B A X \\
& \Leftrightarrow \angle I B X=\angle B I X \\
& \Leftrightarrow X I=X B=X C .
\end{aligned}
$$

Example 1．（1982 Australian Math Olympiad）Let $A B C$ be a triangle，and let the internal bisector of the angle A meet the circumcircle again at P ． Define Q and R similarly．Prove that $A P$ $+B Q+C R>A B+B C+C A$ ．

Solution．Let I be the incenter of $\triangle A B C$ ． By the theorem，we have $2 I R=A R+B R$ $>A B$ and similarly $2 I P>B C, 2 I Q>C A$ ． Also $A I+B I>A B, B I+C I>B C$ and $C I+A I>C A$ ．Adding all these inequalities together，we get
$2(A P+B Q+C R)>2(A B+B C+C A)$.
Example 2．（1978 IMO）In $A B C, A B=$ $A C$ ．A circle is tangent internally to the circumcircle of $A B C$ and also to the sides $A B, A C$ at P, Q ，respectively． Prove that the midpoint of segment $P Q$ is the center of the incircle of $\triangle A B C$ ．

Solution．Let I be the midpoint of line segment $P Q$ and X be the intersection of the angle bisector of $\angle B A C$ with the arc $B C$ not containing A ．

By symmetry，$A X$ is a diameter of the circumcircle of $\triangle A B C$ and X is the midpoint of the arc $P X Q$ on the inside circle，which implies $P X$ bisects $\angle Q P B$ ．Now $\angle A B X=90^{\circ}=\angle P I X$ so that X, I, P, B are concyclic．Then

$$
\angle I B X=\angle I P X=\angle B P X=\angle B I X .
$$

So $X I=X B$ ．By the theorem，I is the incenter of $\triangle A B C$ ．

Example 3．（2002 IMO）Let $B C$ be a diameter of the circle Γ with center O ． Let A be a point on Γ such that $0^{\circ}<$ $\angle A O B<120^{\circ}$ ．Let D be the midpoint of the $\operatorname{arc} A B$ not containing C ．The line through O parallel to $D A$ meets the line $A C$ at J ．The perpendicular bisector of $O A$ meets Γ at E and at F ．Prove that J is the incenter of the triangle $C E F$ ．

Solution. The condition $\angle A O B<$ 120° ensures I is inside $\triangle C E F$ (when $\angle A O B$ increases to 120°, I will coincide with C). Now radius $O A$ and chord $E F$ are perpendicular and bisect each other. So EOFA is a rhombus. Hence A is the midpoint of arc $E A F$. Then $C A$ bisects $\angle E C F$. Since $O A=$ $O C, \angle A O D=1 / 2 \angle A O B=\angle O A C$. Then $D O$ is parallel to $A J$. Hence $O D A J$ is a parallelogram. Then $A J=$ $D O=E O=A E$. By the theorem, J is the incenter of $\triangle C E F$.

Example 4. (1996 IMO) Let P be a point inside triangle $A B C$ such that

$$
\angle A P B-\angle A C B=\angle A P C-\angle A B C
$$

Let D, E be the incenters of triangles $A P B, A P C$ respectively. Show that $A P$, $B D$ and $C E$ meet at a point.

Solution. Let lines $A P, B P, C P$ intersect the circumcircle of $\triangle A B C$ again at F, G, H respectively. Now

$$
\begin{aligned}
\angle A P B-\angle A C B & =\angle F P G-\angle A G B \\
& =\angle F A G .
\end{aligned}
$$

Similarly, $\angle A P C-\angle A B C=\angle F A H$. So $A F$ bisects $\angle H A G$. Let K be the incenter of $\triangle H A G$. Then K is on $A F$ and lines $H K$, $G K$ pass through the midpoints I, J of minor arcs $A G, A H$ respectively. Note lines $B D, C E$ also pass through I, J as they bisect $\angle A B P$, $\angle A C P$ respectively.

Applying Pascal's theorem (see vol.10, no. 3 of Math Excalibur) to B, G, J, C,
H, I on the circumcircle, we see that $P=B G \cap C H, K=G J \cap H I$ and $B I \cap C J=$ $B D \cap C E$ are collinear. Hence, $B D \cap C E$ is on line $P K$, which is the same as line $A P$.

Example 5. (2006 APMO) Let A, B be two distinct points on a given circle O and let P be the midpoint of line segment $A B$. Let O_{l} be the circle tangent to the line $A B$ at P and tangent to the circle O. Let ℓ be the tangent line, different from the line $A B$, to O_{1} passing through A. Let C be the intersection point, different from A, of ℓ and O. Let Q be the midpoint of the line segment $B C$ and O_{2} be the circle tangent to the line $B C$ at Q and tangent to the line segment $A C$. Prove that the circle O_{2} is tangent to the circle O.

Solution. Let the perpendicular to $A B$ through P intersect circle O at N and M with N and C on the same side of line $A B$. By symmetry, segment $N P$ is a diameter of the circle of O_{1} and its midpoint L is the center of O_{1}. Let line $A L$ intersect circle O again at Z. Let line $Z Q$ intersect line $C M$ at J and circle O again at K.

Since $A B$ and $A C$ are tangent to circle O_{1}, $A L$ bisects $\angle C A B$ so that Z is the midpoint of arc $B C$. Since Q is the midpoint of segment $B C, \angle Z Q B=90^{\circ}=$ $\angle L P A$ and $\angle J Q C=90^{\circ}=\angle M P B$. Next

$$
\angle Z B Q=\angle Z B C=\angle Z A C=\angle L A P
$$

So $\triangle Z Q B, \triangle L P A$ are similar. Since M is the midpoint of arc $A M B$,

$$
\angle J C Q=\angle M C B=\angle M C A=\angle M B P
$$

So $\triangle J Q C, \triangle M P B$ are similar.
By the intersecting chord theorem, $A P \cdot B P$ $=N P \cdot M P=2 L P \cdot M P$. Using the similar triangles above, we have

$$
\frac{1}{2}=\frac{L P \cdot M P}{A P \cdot B P}=\frac{Z Q \cdot J Q}{B Q \cdot C Q}
$$

By the intersecting chord theorem, $K Q \cdot Z Q$ $=B Q \cdot C Q$ so that

This implies J is the midpoint of $K Q$. Hence the circle with center J and diameter $K Q$ is tangent to circle O at K and tangent to $B C$ at Q. Since J is on the bisector of $\angle B C A$, this circle is also tangent to $A C$. So this circle is O_{2}.

Example 6. (1989 IMO) In an acute-angled triangle $A B C$ the internal bisector of angle A meets the circumcircle of the triangle again at A_{1}. Points B_{1} and C_{1} are defined similarly. Let A_{0} be the point of intersection of the line $A A_{1}$ with the external bisectors of angles B and C. Points B_{0} and C_{0} are defined similarly. Prove that:
(i) the area of the triangle $A_{0} B_{0} C_{0}$ is twice the area of the hexagon $A C_{1} B A_{1} C B_{1}$,
(ii) the area of the triangle $A_{0} B_{0} C_{0}$ is at least four times the area of the triangle $A B C$.

Solution. (i) Let I be the incenter of $\triangle A B C$. Since internal angle bisector and external angle bisector are perpendicular, we have $\angle B_{0} B A_{0}=90^{\circ}$. By the theorem, $A_{1} I=A_{1} B$. So A_{1} must be the midpoint of the hypotenuse $A_{0} I$ of right triangle $I B A_{0}$. So the area of $\triangle B I A_{0}$ is twice the area of $\triangle B I A_{1}$.

Cutting the hexagon $A C_{1} B A_{1} C B_{1}$ into six triangles with common vertex I and applying a similar area fact like the last statement to each of the six triangles, we get the conclusion of (i).
(ii) Using (i), we only need to show the area of hexagon $A C_{1} B A_{1} C B_{1}$ is at least twice the area of $\triangle A B C$.

(continued on page 4)

$$
K Q=(B Q \cdot C Q) / Z Q=2 J Q
$$

Problem Corner

We welcome readers to submit their solutions to the problems posed below for publication consideration. The solutions should be preceded by the solver's name, home (or email) address and school affiliation. Please send submissions to Dr. Kin Y. Li, Department of Mathematics, The Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon, Hong Kong. The deadline for submitting solutions is August 16, 2006.

Problem 251. Determine with proof the largest number x such that a cubical gift of side x can be wrapped completely by folding a unit square of wrapping paper (without cutting).

Problem 252. Find all polynomials $f(x)$ with integer coefficients such that for every positive integer $n, 2^{n}-1$ is divisible by $f(n)$.

Problem 253. Suppose the bisector of $\angle B A C$ intersect the arc opposite the angle on the circumcircle of $\triangle A B C$ at A_{1}. Let B_{1} and C_{1} be defined similarly. Prove that the area of $\Delta A_{1} B_{1} C_{1}$ is at least the area of $\triangle A B C$.

Problem 254. Prove that if $a, b, c>0$, then

$$
\begin{aligned}
& \sqrt{a b c}(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a+b+c)^{2} \\
& \geq 4 \sqrt{3 a b c(a+b+c)}
\end{aligned}
$$

Problem 255. Twelve drama groups are to do a series of performances (with some groups possibly making repeated performances) in seven days. Each group is to see every other group's performance at least once in one of its day-offs.
Find with proof the minimum total number of performances by these groups.

```
\(* * * * * * * * * * * * * * * * *\)
```


Solutions

Problem 246. A spy plane is flying at the speed of 1000 kilometers per hour along a circle with center A and radius 10 kilometers. A rocket is fired from A at the same speed as the spy plane such that it is always on the radius from A to the spy plane. Prove such a path for the rocket exists and find how long it takes for the rocket to hit the spy plane.
(Source: 1965 Soviet Union Math Olympiad)

Solution. Jeff CHEN (Virginia, USA), Koyrtis G. CHRYSSOSTOMOS (Larissa, Greece, teacher), G.R.A. 20 Math Problem Group (Roma, Italy) and Alex \mathbf{O} Kin-Chit (STFA Cheng Yu Tung Secondary School).

Let the spy plane be at Q when the rocket was fired. Let L be the point on the circle obtained by rotating Q by 90° in the forward direction of motion with respect to the center A. Consider the semicircle with diameter $A L$ on the same side of line $A L$ as Q. We will show the path from A to L along the semicircle satisfies the conditions.

For any point P on the arc $Q L$, let the radius $A P$ intersect the semicircle at R. Let O be the midpoint of $A L$. Since

$$
\angle Q A P=\angle R L A=1 / 2 \angle R O A
$$

and $A L=2 A O$, the length of arc $A R$ is the same as the length of arc $Q P$. So the conditions are satisfied.
Finally, the rocket will hit the spy plane at L after $5 \pi / 1000$ hour it was fired.

Comments: One solver guessed the path should be a curve and decided to try a circular arc to start the problem. The other solvers derived the equation of the path by a differential equation as follows: using polar coordinates, since the spy plane has a constant angular velocity of 1000/10 = $100 \mathrm{rad} / \mathrm{sec}$, so at time t, the spy plane is at $(10,100 t)$ and the rocket is at $(r(t), \theta(t))$. Since the rocket and the spy plane are on the same radius, so $\theta(t)=100 t$. Now they have the same speed, so

$$
\left(r^{\prime}(t)\right)^{2}+\left(r(t) \theta^{\prime}(t)\right)^{2}=10^{6}
$$

Then

$$
\frac{r^{\prime}(t)}{\sqrt{100-r(t)^{2}}}=100
$$

Integrating both sides from 0 to t, we get the equation $r=10 \sin (100 t)=10 \sin \theta$, which describes the path above.

Problem 247. (a) Find all possible positive integers $k \geq 3$ such that there are k positive integers, every two of them are
not relatively prime, but every three of them are relatively prime.
(b) Determine with proof if there exists an infinite sequence of positive integers satisfying the conditions in (a) above.
(Source: 2003 Belarussian Math Olympiad)
Solution. G.R.A. 20 Math Problem Group (Roma, Italy) and YUNG Fai.
(a) We shall prove by induction that the conditions are true for every positive integer $k \geq 3$.

For $k=3$, the numbers $6,10,15$ satisfy the conditions. Assume it is true for some $k \geq 3$ with the numbers being a_{1}, a_{2}, \ldots, a_{k}. Let $p_{1}, p_{2}, \ldots, p_{k}$ be distinct prime numbers such that each p_{i} is greater than $a_{1} a_{2} \ldots a_{k}$. For $I=1$ to k, let $b_{i}=a_{i} p_{i}$ and let $b_{k+1}=p_{1} p_{2} \ldots p_{k}$. Then $\operatorname{gcd}\left(b_{i}, b_{j}\right)=\operatorname{gcd}\left(a_{i}, a_{j}\right)>1$ for $1 \leq i<j \leq k$, $\operatorname{gcd}\left(b_{i}, b_{k+1}\right)=p_{i}>1$ for $1 \leq i \leq k$,
$\operatorname{gcd}\left(b_{h}, b_{i}, b_{j}\right)=\operatorname{gcd}\left(a_{h}, a_{i}, a_{j}\right)=1$
for $1 \leq h \leq i<j \leq k$ and
$\operatorname{gcd}\left(b_{i}, b_{j}, b_{k+1}\right)=1$ for $1 \leq i<j \leq k$, completing the induction.
(b) Assume there are infinitely many positive integers $a_{1}, a_{2}, a_{3}, \ldots$ satisfying the conditions in (a). Let a_{1} have exactly m prime divisors. For $i=2$ to $m+2$, since each of the $m+1$ numbers $\operatorname{gcd}\left(a_{1}, a_{i}\right)$ is divisible by one of these m primes, by the pigeonhole principle, there are i, j with $2 \leq i<j \leq m+2$ such that $\operatorname{gcd}\left(a_{1}, a_{i}\right)$ and $\operatorname{gcd}\left(a_{1}, a_{j}\right)$ are divisible by the same prime. Then $\operatorname{gcd}\left(a_{1}, a_{i}, a_{j}\right)>1$, a contradiction.

Commended solvers: CHAN Nga Yi (Carmel Divine Grace Foundation Secondary School, Form 6) and CHAN Yat Sing (Carmel Divine Grace Foundation Secondary School, Form 6).

Problem 248. Let $A B C D$ be a convex quadrilateral such that line $C D$ is tangent to the circle with side $A B$ as diameter. Prove that line $A B$ is tangent to the circle with side $C D$ as diameter if and only if lines $B C$ and $A D$ are parallel.

Solution. Jeff CHEN (Virginia, USA) and Koyrtis G. CHRYSSOSTOMOS (Larissa, Greece, teacher).

Let E be the midpoints of $A B$. Since $C D$ is tangent to the circle, the distance from E to line $C D$ is $h_{1}=A B / 2$. Let F be the midpoint of $C D$ and let h_{2} be the distance from F to line $A B$. Observe that the areas of $\triangle C E F$ and $\triangle D E F=$ $C D \cdot A B / 8$. Now
line $A B$ is tangent to the circle with side $C D$ as diameter
$\Leftrightarrow h_{2}=C D / 2$
\Leftrightarrow areas of $\triangle A E F, \triangle B E F, \triangle C E F$ and $\triangle D E F$ are equal to $A B \cdot C D / 8$
$\Leftrightarrow A D\|E F, B C\| E F$
$\Leftrightarrow A D \| B C$.

Problem 249. For a positive integer n, if $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$ are in [1,2] and $a_{1}^{2}+\cdots+a_{n}^{2}=b_{1}^{2}+\cdots+b_{n}^{2}$, then prove that

$$
\frac{a_{1}^{3}}{b_{1}}+\cdots+\frac{a_{n}^{3}}{b_{n}} \leq \frac{17}{10}\left(a_{1}^{2}+\cdots+a_{n}^{2}\right) .
$$

Solution. Jeff CHEN (Virginia, USA).
For x, y in $[1,2]$, we have

$$
\begin{aligned}
& 1 / 2 \leq x / y \leq 2 \\
\Leftrightarrow & y / 2 \leq x \leq 2 y \\
\Leftrightarrow & (y / 2-x)(2 y-x) \leq 0 \\
\Leftrightarrow & x^{2}+y^{2} \leq 5 x y / 2 .
\end{aligned}
$$

Let $x=a_{i}$ and $y=b_{i}$, then $a_{i}^{2}+b_{i}^{2} \leq$ $5 a_{i} b_{i} / 2$. Summing and manipulating, we get

$$
-\sum_{i=1}^{n} a_{i} b_{i} \leq-\frac{2}{5} \sum_{i=1}^{n}\left(a_{i}^{2}+b_{i}^{2}\right)=-\frac{4}{5} \sum_{i=1}^{n} a_{i}^{2} .
$$

Let $x=\left(a_{i}^{3} / b_{i}\right)^{1 / 2}$ and $y=\left(a_{i} b_{i}\right)^{1 / 2}$. Then $x / y=a_{i} / b_{i}$ in [1,2]. So $a_{i}^{3} / b_{i}+a_{i} b_{i} \leq$ $5 a_{i}^{2} / 2$.
Summing, we get

$$
\sum_{i=1}^{n} \frac{a_{i}^{3}}{b_{i}}+\sum_{i=1}^{n} a_{i} b_{i} \leq \frac{5}{2} \sum_{i=1}^{n} a_{i}^{2} .
$$

Adding the two displayed inequalities, we get

$$
\frac{a_{1}^{3}}{b_{1}}+\cdots+\frac{a_{n}^{3}}{b_{n}} \leq \frac{17}{10}\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)
$$

Problem 250. Prove that every region with a convex polygon boundary cannot be dissected into finitely many regions with nonconvex quadrilateral boundaries.

Solution. YUNG Fai.

Assume the contrary that there is a dissection of the region into nonconvex quadrilateral $R_{1}, R_{2}, \ldots, R_{n}$. For a nonconvex quadrilateral R_{i}, there is a vertex where the angle is $\theta_{i}>180^{\circ}$, which we refer to as the large vertex of the quadrilateral. The three other vertices, where the angles are less than 180° will be referred to as small vertices.

Since the boundary of the region is a convex polygon, all the large vertices are in the interior of the region. At a large vertex, one angle is $\theta_{i}>180^{\circ}$, while the remaining angles are angles of small vertices of some of the quadrilaterals and add up to $360^{\circ}-\theta_{i}$. Now

$$
\sum_{i=1}^{n}\left(360^{\circ}-\theta_{i}\right)
$$

accounts for all the angles associated with all the small vertices. This is a contradiction since this will leave no more angles from the quadrilaterals to form the angles of the region.

Olympiad Corner

(continued from page 1)

Part 2, Day 1 (June 8, 2005)

Problem 1. Determine all triples of positive integers (a, b, c), such that $a+b+c$ is the least common multiple of a, b and c.
Problem 2. Let a, b, c, d be positive real numbers. Prove

$$
\frac{a+b+c+d}{a b c d} \leq \frac{1}{a^{3}}+\frac{1}{b^{3}}+\frac{1}{c^{3}}+\frac{1}{d^{3}} .
$$

Problem 3. In an acute-angled triangle $A B C$, circle k_{1} with diameter $A C$ and k_{2} with diameter $B C$ are drawn. Let E be the foot of B on $A C$ and F be the foot of A on $B C$. Furthermore, let L and N be the points in which the line $B E$ intersects with k_{1} (with L lying on the segment $B E$) and K and M be the points in which the line $A F$ intersects with k_{2} (with K on the segment $A F$). Prove that $K L M N$ is a cyclic quadrilateral.

Part 2, Day 2 (June 9, 2005)

Problem 4. The function f is defined for all integers $\{0,1,2, \ldots, 2005\}$, assuming non-negative integer values in each case. Furthermore, the following conditions are fulfilled for all values of x for which the function is defined:

$$
\begin{gathered}
f(2 x+1)=f(2 x), \quad f(3 x+1)=f(3 x) \\
\text { and } f(5 x+1)=f(5 x) .
\end{gathered}
$$

How many different values can the function assume at most?
Problem 5. Determine all sextuples (a, b, c, d, e, f) of real numbers, such that the following system of equations is fulfilled:

$$
\begin{aligned}
& 4 a=(b+c+d+e)^{4}, 4 b=(c+d+e+f)^{4} \\
& 4 c=(d+e+f+a)^{4}, 4 d=(e+f+a+b)^{4} \\
& 4 e=(f+a+b+c)^{4}, 4 f=(a+b+c+d)^{4}
\end{aligned}
$$

Problem 6. Let Q be a point in the interior of a cube. Prove that an infinite number of lines passing through Q exists, such that Q is the mid-point of the line-segment joining the two points P and R in which the line and the cube intersect.

Angle Bisectors Bisect Arcs

(continued from page 2)

Let H be the orthocenter of $\triangle A B C$. Let line $A H$ intersect $B C$ at D and the circumcircle of $\triangle A B C$ again at A_{2}. Note

$$
\begin{aligned}
\angle A_{2} B C & =\angle A_{2} A C \\
& =\angle D A C \\
& =90^{\circ}-\angle A C D \\
& =\angle H B C
\end{aligned}
$$

Similarly, we have $\angle A_{2} C B=\angle H C B$. Then $\triangle B A_{2} C \cong \triangle B H C$. Since A_{1} is the midpoint of arc $B A_{1} C$, it is at least as far from chord $B C$ as A_{2}. So the area of $\triangle B A_{1} C$ is at least the area of $\Delta B A_{2} C$. Then the area of quadrilateral $B A_{1} C H$ is at least twice the area of $\triangle B H C$.

Cutting hexagon $A C_{1} B A_{1} C B_{1}$ into three quadrilaterals with common vertex H and comparing with cutting $\triangle A B C$ into three triangles with common vertex H in terms of areas, we get the conclusion of (ii).

Remarks. In the solution of (ii), we saw the orthocenter H of $\triangle A B C$ has the property that $\triangle B A_{2} C \cong \triangle B H C$ (hence, also $H D=A_{2} D$). These are useful facts for problems related to the orthocenters involving the circumcircles.

