Mathematical Excalibur

Olympiad Corner

The 9th China Hong Kong Math Olympiad was held on Dec．2， 2006. The following were the problems．

Problem 1．Let M be a subset of $\{1,2, \ldots, 2006\}$ with the following property：For any three elements x, y and $z(x<y<z)$ of $M, x+y$ does not divide z ．Determine the largest possible size of M ．Justify your claim．

Problem 2．For a positive integer k ，let $f_{1}(k)$ be the square of the sum of the digits of k ．（For example $f_{1}(123)=$ $(1+2+3)^{2}=36$ ．）Let $f_{n+1}(k)=f_{1}\left(f_{n}(k)\right)$ ． Determine the value of $f_{2007}\left(2^{2006}\right)$ ． Justify your claim．

Problem 3．A convex quadrilateral $A B C D$ with $A C \neq B D$ is inscribed in a circle with center O ．Let E be the intersection of diagonals $A C$ and $B D$ ．If P is a point inside $A B C D$ such that $\angle P A B+\angle P C B=\angle P B C+\angle P D C=90^{\circ}$, prove that O, P and E are collinear．
Problem 4．Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive numbers．If there exists a positive number M such that for every $n=1,2,3, \ldots$ ，

$$
a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}<M a_{n+1}^{2},
$$

then prove that there exists a positive number M＇such that for every $n=1,2$ ， $3, \ldots$ ，

$$
a_{1}+a_{2}+\ldots+a_{n}<M^{\prime} a_{n+1} .
$$

Editors：張百康（CHEUNG Pak－Hong），Munsang College，HK高子眉（KO Tsz－Mei）
梁 達 榮（LEUNG Tat－Wing）
李 健 賢（LI Kin－Yin），Dept．of Math．，HKUST
吳 鏡 波（NG Keng－Po Roger），ITC，HKPU
Artist：楊 秀 英（YEUNG Sau－Ying Camille），MFA，CU
Acknowledgment：Thanks to Elina Chiu，Math．Dept．， HKUST for general assistance．

On－line：

http：／／www．math．ust．hk／mathematical＿excalibur／
The editors welcome contributions from all teachers and students．With your submission，please include your name， address，school，email，telephone and fax numbers（if available）．Electronic submissions，especially in MS Word， are encouraged．The deadline for receiving material for the next issue is January 25， 2007.

For individual subscription for the next five issues for the 05－06 academic year，send us five stamped self－addressed envelopes．Send all correspondence to：

Dr．Kin－Yin LI

Department of Mathematics
The Hong Kong University of Science and Technology Clear Water Bay，Kowloon，Hong Kong

Fax：（852） 23581643
Email：makyli＠ust．hk

Pole and Polar

Kin Y．Li

Let C be a circle with center O and radius r ．Recall the inversion with respect to C（see Mathematical Excalibur，vol．9，no．2，p．1）sends every point $P \neq O$ in the same plane as C to the image point P^{\prime} on the ray $\overrightarrow{O P}$ such that $O P \cdot O P^{\prime}=r^{2}$ ．The polar of P is the line p perpendicular to the line $O P$ at P^{\prime} ． Conversely，for any line p not passing through O ，the pole of p is the point P whose polar is p ．The function sending P to p is called the pole－polar transformation（or reciprocation）with respect to O and r（or with respect to C ）．

Following are some useful facts：
（1）If P is outside C ，then recall P^{\prime} is found by drawing tangents from P to C ， say tangent at X and Y ．Then $P^{\prime}=O P$ $\cap X Y$ ，where \cap denotes intersection．By symmetry，$O P \perp X Y$ ．So the polar p of P is the line $X Y$ ．

Conversely，for distinct points X, Y on C ，the pole of the line $X Y$ is the intersection of the tangents at X and Y ． Also，it is the point P on the perpendicular bisector of $X Y$ such that O, X, P, Y are concyclic since $\angle O X P=$ $90^{\circ}=\angle O Y P$ ．
（2）（La Hire＇s Theorem）Let x and y be the polars of X and Y ，respectively． Then X is on line $y \Leftrightarrow Y$ is on line x ．

Proof．Let X^{\prime}, Y^{\prime} be the images of X, Y for the inversion with respect to C ． Then $O X \cdot O X^{\prime}=r^{2}=O Y \cdot O Y^{\prime}$ implies X ， $X^{\prime}, Y, Y^{\prime}$ are concyclic．Now

$$
\begin{aligned}
X \text { is on } y & \Leftrightarrow \angle X Y^{\prime} Y=90^{\circ} \\
& \Leftrightarrow \angle X X^{\prime} Y=90^{\circ} \\
& \Leftrightarrow Y \text { is on } x .
\end{aligned}
$$

（3）Let x, y, z be the polars of distinct points X, Y, Z respectively．Then $Z=$ $x \cap y \Leftrightarrow z=X Y$ ．

Proof．By La Hire＇s theorem，Z on $x \cap y$ $\Leftrightarrow X$ on z and Y on $z \Leftrightarrow z=X Y$ ．
（4）Let W, X, Y, Z be on C ．The polar p of $P=X Y \cap W Z$ is the line through $Q=$ $W X \cap Z Y$ and $R=X Z \cap Y W$ ．

Proof．Let S, T be the poles of $s=X Y, t$ $=W Z$ respectively．Then $P=s \cap t$ ．By fact（3），$S=x \cap y, T=w \cap z$ and $p=S T$ ． For hexagon $W X X Z Y Y$ ，we have
$Q=W X \cap Z Y, \quad S=X X \cap Y Y, \quad R=X Z \cap Y W$,
where $X X$ denotes the tangent line at X ． By Pascal＇s theorem（see Mathematical Excalibur，vol．10，no．3，p．1），Q，S，R are collinear．Similarly，considering the hexagon $X W W Y Z Z$ ，we see Q, T, R are collinear．Therefore，$p=S T=Q R$ ．

Next we will present some examples using the pole－polar transformation．

Example 1．Let $U V$ be a diameter of a semicircle．P, Q are two points on the semicircle with $U P<U Q$ ．The tangents to the semicircle at P and Q meet at R ． If $S=U P \cap V Q$ ，then prove that $R S \perp U V$ ．

Solution（due to CHENG Kei Tsi）．Let $K=P Q \cap U V$ ．With respect to the circle， by fact（4），the polar of K passes through $U P \cap V Q=S$ ．Since the tangents to the semicircle at P and Q meet at R ，by fact （1），the polar of R is $P Q$ ．Since K is on line $P Q$ ，which is the polar of R ，by La Hire＇s theorem，R is on the polar of K ． So the polar of K is the line $R S$ ．As K is on the diameter $U V$ extended，by the definition of polar，we get $R S \perp U V$ ．

Example 2. Quadrilateral $A B C D$ has an inscribed circle Γ with sides $A B, B C$, $C D, D A$ tangent to Γ at G, H, K, L respectively. Let $A B \cap C D=E, A D \cap B C$ $=F$ and $G K \cap H L=P$. If O is the center of Γ, then prove that $O P \perp E F$.

Solution. Consider the pole-polar transformation with respect to the inscribed circle. By fact (1), the polars of E, F are lines $G K, H L$ respectively. Since $G K \cap H L=P$, by fact (3), the polar of P is line $E F$. By the definition of polar, we get $O P \perp E F$.

Example 3. (1997 Chinese Math Olympiad) Let $A B C D$ be a cyclic quadrilateral. Let $A B \cap C D=P$ and $A D \cap B C=Q$. Let the tangents from Q meet the circumcircle of $A B C D$ at E and F. Prove that P, E, F are collinear.

Solution. Consider the pole-polar transformation with respect to the circumcircle of $A B C D$. Since $P=$ $A B \cap C D$, by fact (4), the polar of P passes through $A D \cap B C=Q$. By La Hire's theorem, P is on the polar of Q, which by fact (1), is the line $E F$.

Example 4. (1998 Austrian-Polish Math Olympiad) Distinct points A, B, C, D, E, F lie on a circle in that order. The tangents to the circle at the points A and D, the lines $B F$ and $C E$ are concurrent. Prove that the lines $A D, B C$, $E F$ are either parallel or concurrent.

Solution. Let O be the center of the circle and $X=A A \cap D D \cap B F \cap C E$.

If $B C|\mid E F$, then by symmetry, lines $B C$ and $E F$ are perpendicular to line $O X$. Since $A D \perp O X$, we get $B C||E F|| A D$.
If lines $B C, E F$ intersect, then by fact (4), the polar of $X=C E \cap B F$ passes through $B C \cap E F$. Since the tangents at A and D intersect at X, by fact (1), the polar of X is line $A D$. Therefore, $A D, B C$ and $E F$ are concurrent in this case.

Example 5. (2006 China Western Math Olympiad) As in the figure below, $A B$ is a diameter of a circle with center $O . C$ is a point on $A B$ extended. A line through C cuts the circle with center O at $D, E . O F$ is a diameter of the circumcircle of $\triangle B O D$ with center O_{1}. Line $C F$ intersect the circumcircle again at G. Prove that O, A, E, G are concyclic.

Solution (due to WONG Chiu Wai). Let $A E \cap B D=P$. By fact (4), the polar of P with respect to the circle having center O is the line through $B A \cap D E=C$ and $A D \cap E B=H$. Then $O P \perp C H$. Let $Q=$ $O P \cap C H$.

We claim $Q=G$. Once this shown, we will have $P=B D \cap O G$. Then $P E \cdot P A=$ $P D \cdot P B=P G \cdot P O$, which implies O, A, E, G are concyclic.

To show $Q=G$, note that $\angle P Q H$, $\angle P D H$ and $\angle P E H$ are 90°, which implies P, E, Q, H, D are concyclic. Then $\angle P Q D=\angle P E D=\angle D B O$, which implies Q, D, B, O are concyclic. Therefore, $Q=G$ since they are both the point of intersection (other than O) of the circumcircle of $\triangle B O D$ and the circle with diameter $O C$.

Example 6. (2006 China Hong Kong Math Olympiad) A convex quadrilateral $A B C D$ with $A C \neq B D$ is inscribed in a circle with center O. Let E be the intersection of diagonals $A C$ and $B D$. If P is a point inside $A B C D$ such that
$\angle P A B+\angle P C B=\angle P B C+\angle P D C=90^{\circ}$,
prove that O, P and E are collinear.

Solution (due to WONG Chiu Wai).

Let $\Gamma, \Gamma_{1}, \Gamma_{2}$ be the circumcircles of quadrilateral $A B C D, \triangle P A C, \triangle P B D$ with centers O, O_{1}, O_{2} respectively. We first show that the polar of O_{1} with respect to Γ is line $A C$. Since $O O_{1}$ is the perpendicular bisector of $A C$, by fact (1), all we need to show is that

$$
\angle A O C+\angle A O_{1} C=180^{\circ}
$$

For this, note

$$
\begin{aligned}
& \angle A P C \\
= & 360^{\circ}-(\angle P A B+\angle P C B+\angle A B C) \\
= & 270^{\circ}-\angle A B C \\
= & 90^{\circ}+\angle A D C
\end{aligned}
$$

and so

$$
\begin{aligned}
\angle A O_{1} C & =2\left(180^{\circ}-\angle A P C\right) \\
& =2\left(90^{\circ}-\angle A D C\right) \\
& =180^{\circ}-2 \angle A D C \\
& =180^{\circ}-\angle A O C .
\end{aligned}
$$

Similarly, the polar of O_{2} with respect to Γ is line $B D$. By fact (3), since $E=$ $A C \cap B D$, the polar of E with respect to Γ is line $O_{1} O_{2}$. So $O E \perp O_{1} O_{2}$.
(Next we will consider radical axis and radical center, see Mathematical Excalibur, vol. 4, no. 3, p. 2.) Among $\Gamma, \Gamma_{1}, \Gamma_{2}$, two of the pairwise radical axes are lines $A C$ and $B D$. This implies E is the radical center. Since Γ_{1}, Γ_{2} intersect at P, so $P E$ is the radical axis of Γ_{1}, Γ_{2}, which implies $P E \perp O_{1} O_{2}$. Combining with $O E \perp O_{1} O_{2}$ proved above, we see O, P and E are collinear.

Problem Corner

We welcome readers to submit their solutions to the problems posed below for publication consideration. The solutions should be preceded by the solver's name, home (or email) address and school affiliation. Please send submissions to Dr. Kin Y. Li, Department of Mathematics, The Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon, Hong Kong. The deadline for submitting solutions is January 25, 2007.

Problem 261. Prove that among any 13 consecutive positive integers, one of them has sum of its digits (in base 10) divisible by 7 .

Problem 262. Let O be the center of the circumcircle of $\triangle A B C$ and let $A D$ be a diameter. Let the tangent at D to the circumcircle intersect line $B C$ at P. Let line $P O$ intersect lines $A C, A B$ at M, N respectively. Prove that $O M=O N$.

Problem 263. For positive integers m, n, consider a $(2 m+1) \times(2 n+1)$ table, where in each cell, there is exactly one ant. At a certain moment, every ant moves to a horizontal or vertical neighboring cell. Prove that after that moment, there exists a cell with no ant.
Problem 264. For a prime number $p>$ 3 and arbitrary integers a, b, prove that $a b^{p}-b a^{p}$ is divisible by $6 p$.

Problem 265. Determine (with proof) the maximum of

$$
\sum_{j=1}^{n}\left(x_{j}^{4}-x_{j}^{5}\right)
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are nonnegative real numbers whose sum is 1 .

Solutions

Problem 256. Show that there is a rational number q such that
$\sin 1^{\circ} \sin 2^{\circ} \cdots \sin 89^{\circ} \sin 90^{\circ}=q \sqrt{10}$.
Solution 1. Jeff CHEN (Virginia, USA), Koyrtis G. CHRYSSOSTOMOS (Larissa, Greece, teacher), G.R.A. 20 Math Problem Group (Roma, Italy) and D. Kipp JOHNSON (Valley Catholic School, Teacher, Beaverton, Oregon, USA).

Let $\omega=e^{2 \pi i / 180}$. Then

$$
P(z)=\sum_{n=0}^{179} z^{n}=\prod_{k=1}^{179}\left(z-\omega^{k}\right) .
$$

Using $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}=\frac{e^{2 i x}-1}{2 i e^{i x}}$, we have

$$
\prod_{k=1}^{90} \sin k^{\circ}=\prod_{k=1}^{90} \frac{\omega^{k}-1}{2 i \omega^{k / 2}}
$$

Also, $\prod_{k=1}^{90} \sin k^{\circ}=\prod_{k=91}^{179} \sin k^{\circ}=\prod_{k=91}^{179} \frac{\omega^{k}-1}{2 i \omega^{k / 2}}$.
Then

$$
\left|\prod_{k=1}^{90} \sin k^{\circ}\right|^{2}=\prod_{k=1}^{179} \frac{\left|\omega^{k}-1\right|}{2}=\frac{|P(1)|}{2^{179}}=\frac{90}{2^{178}}
$$

Therefore, $\prod_{k=1}^{90} \sin k^{\circ}=\frac{3}{2^{89}} \sqrt{10}$.
Solution 2. Jeff CHEN (Virginia, USA), Koyrtis G. CHRYSSOSTOMOS (Larissa, Greece, teacher).
Let S be the left-handed side. Note
$\sin 3 \theta=\sin \theta \cos 2 \theta+\cos \theta \sin 2 \theta$

$$
\begin{aligned}
& =\sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta+2 \cos ^{2} \theta\right) \\
& =4 \sin \theta\left(\frac{3}{4} \cos ^{2} \theta-\frac{1}{4} \sin ^{2} \theta\right) \\
& =4 \sin \theta \sin \left(60^{\circ}-\theta\right) \sin \left(60^{\circ}+\theta\right) .
\end{aligned}
$$

So, $\sin \theta \sin \left(60^{\circ}-\theta\right) \sin \left(60^{\circ}+\theta\right)=\frac{\sin 3 \theta}{4}$.
Using this, we have
$S=\sin 30 \sin 60 \prod_{n=1}^{29} \sin n^{\circ} \sin \left(60^{\circ}-n^{\circ}\right) \sin \left(60^{\circ}+n^{\circ}\right)$
$=\frac{\sqrt{3}}{4^{30}} \sin 3^{3} \sin 6^{6} \sin 9^{\circ} \cdots \sin 87$
$=\frac{\sqrt{3}}{4^{30}} \sin 30^{\circ} \sin 60 \prod_{m=1}^{9} \sin 3 m^{\circ} \sin \left(60^{\circ}-3 m^{\circ}\right) \sin \left(60^{\circ}+3 m^{\circ}\right)$
$=\frac{3}{4^{40}} \sin 9^{\circ} \sin 18 \sin 2 T \cdots \sin 81^{\circ}$
$=\frac{3}{4^{40}} \sin 9^{\circ} \cos 9^{\circ} \sin 18 \cos 18 \sin 2 \mathcal{T} \cos 27 \sin 36 \cos 36 \sin 45^{\circ}$
$=\frac{3 \sqrt{2}}{2^{85}} \sin 18 \sin 36 \sin 54^{\sin } \sin 72$
$=\frac{3 \sqrt{2}}{2^{85}} \sin 18 \cos 18 \sin 36 \cos 36$
$=\frac{3 \sqrt{2}}{2^{87}} \sin 36 \sin 72^{\circ}$
$=\frac{3 \sqrt{2}}{2^{87}} \frac{\sqrt{10-2 \sqrt{5}}}{4} \frac{\sqrt{10+2 \sqrt{5}}}{4}=\frac{3}{2^{89}} \sqrt{10}$.

Problem 257. Let $n>1$ be an integer. Prove that there is a unique positive integer $A<n^{2}$ such that $\left[n^{2} / A\right]+1$ is divisible by n, where $[x]$ denotes the greatest integer less than or equal to x.
(Source: 1993 Jiangsu Math Contest)
Solution. Jeff CHEN (Virginia, USA), G.R.A. 20 Math Problem Group (Roma, Italy) and Fai YUNG.

We claim the unique number is $A=n+1$. If $n=2$, then $1 \leq A<n^{2}=4$ and only A $=3$ works. If $n>2$, then $\left[n^{2} / A\right]+1$ divisible by n implies $\frac{n^{2}}{A}+1 \geq\left[\frac{n^{2}}{A}\right]+1 \geq n . \quad$ This leads to
$A \leq \frac{n^{2}}{n-1}=n+1+\frac{1}{n-1} . \quad$ So $A \leq n+1$.
The case $A=n+1$ works because
$\left[\frac{n^{2}}{n+1}\right]+1=(n-1)+1=n$.
The case $A=n$ does not work because $\left[n^{2} / n\right]+1=n+1$ is not divisible by n when $n>1$.
For $0<A<n$, assume $\left[n^{2} / A\right]+1=k n$ for some positive integer k. This leads to

$$
k n-1=\left[\frac{n^{2}}{A}\right] \leq \frac{n^{2}}{A}<\left[\frac{n^{2}}{A}\right]+1=k n
$$

which implies $n<k A \leq\left(n^{2}+A\right) / n<n+1$. This is a contradiction as $k A$ is an integer and cannot be strictly between n and $n+1$.

Problem 258. (Due to Mihaiela Vizental and Alfred Eckstein, Arad, Romaina) Show that if A, B, C are in the interval $(0, \pi / 2)$, then

$$
f(A, B, C)+f(B, C, A)+f(C, A, B) \geq 3,
$$

where

$$
f(x, y, z)=\frac{4 \sin x+3 \sin y+2 \sin z}{2 \sin x+3 \sin y+4 \sin z}
$$

Solution. Samuel Liló Abdalla (Brazil),
Koyrtis G. CHRYSSOSTOMOS
(Larissa, Greece, teacher) and Fai YUNG.

Note
$f(x, y, z)+1=\frac{6 \sin x+6 \sin y+6 \sin z}{2 \sin x+3 \sin y+4 \sin z}$.
For $a, b, c>0$, by the $A M-H M$ inequality, we have

$$
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9 .
$$

Multiplying by $\frac{2}{3}$ on both sides, we get

$$
\begin{equation*}
(a+b+c) \frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 6 \tag{*}
\end{equation*}
$$

Let $r=\sin A, s=\sin B, t=\sin C, a=$ $1 /(2 r+3 s+4 t), b=1 /(2 s+3 t+4 r)$ and
$c=1 /(2 t+3 r+4 s)$. Then

$$
\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=6 r+6 s+6 t .
$$

Using (*), we get
$f(A, B, C)+f(B, C, A)+f(C, A, B)+3$
$=\frac{6 r+6 s+6 t}{2 r+3 s+4 t}+\frac{6 r+6 s+6 t}{2 s+3 t+4 r}+\frac{6 r+6 s+6 t}{2 t+3 r+4 s}$
≥ 6.
The result follows.
Problem 259. Let $A D, B E, C F$ be the altitudes of acute triangle $A B C$. Through D, draw a line parallel to line $E F$ intersecting line $A B$ at R and line $A C$ at Q. Let P be the intersection of lines $E F$ and $C B$. Prove that the circumcircle of $\triangle P Q R$ passes through the midpoint M of side $B C$.
(Source: 1994 Hubei Math Contest)
Solution. Jeff CHEN (Virginia, USA).

Observe that
(1) $\angle B F C=90^{\circ}=\angle B E C$ implies B,
F, E, C concyclic;
(2) $\angle A E B=90^{\circ}=\angle A D B$ implies A, B, D, E concyclic.

By (1), we have $\angle A C B=\angle A F E$. From $E F \| Q R$, we get $\angle A F E=$ $\angle A R Q$. So $\angle A C B=\angle A R Q$. Then B, Q, R, C are concyclic. By the intersecting chord theorem,

$$
\begin{equation*}
R D \cdot Q D=B D \cdot C D \tag{*}
\end{equation*}
$$

Since $\angle B E C=90^{\circ}$ and M is the midpoint of $B C$, we get $M B=M E$ and $\angle E B M=\angle B E M$. Now

$$
\begin{aligned}
& \angle E B M=\angle E P M+\angle B E P \\
& \angle B E M=\angle D E M+\angle B E D .
\end{aligned}
$$

By (1) and (2), $\angle B E P=\angle B C F=90^{\circ}$ $-\angle A B C=\angle B A D=\angle B E D$. So $\angle E P M=\angle D E M$. Then right triangles $E P M$ and $D E M$ are similar. We have $M E / M P=M D / M E$ and so

$$
\begin{aligned}
M B^{2}=M E^{2} & =M D \cdot M P=M D(M D+P D) \\
& =M D^{2}+M D \cdot P D .
\end{aligned}
$$

Then $M D \cdot P D=M B^{2}-M D^{2}$

$$
\begin{aligned}
& =(M B-M D)(M B+M D) \\
& =B D(M C+M D) \\
& =B D \cdot C D .
\end{aligned}
$$

Using (*), we get $R D \cdot Q D=M D \cdot P D$. By the converse of the intersecting chord theorem, P, Q, R, M are concyclic.

Commended solvers: Koyrtis G. CHRYSSOSTOMOS (Larissa, Greece, teacher).

Problem 260. In a class of 30 students, number the students $1,2, \ldots, 30$ from best to worst ability (no two with the same ability). Every student has the same number of friends in the class, where friendships are mutual. Call a student good if his ability is better than more than half of his friends. Determine the maximum possible number of good students in this class.
(Source: 1998 Hubei Math Contest)
Solution. Jeff CHEN (Virginia, USA) and Fai YUNG.

Suppose each student has m friends and n is the maximum number of good students. There are 15 m pairs of friendship.

For m odd, $m=2 k-1$ for some positive integer k. For $j=1,2, \ldots, k$, student j has at least $(2 k-j) \geq k>m / 2$ worse friends, hence student j is good. For the other $n-k$ good students, every one of them has at least k worse friends. Then

$$
\sum_{j=1}^{k}(2 k-j)+(n-k) k \leq 15(2 k-1) .
$$

Solving for n, we get

$$
n \leq 30.5-\left(\frac{15}{k}+\frac{k}{2}\right) \leq 30.5-\sqrt{30}<26
$$

For m even, $m=2 k$ for some positive integer k. For $j=1,2, \ldots, k$, student j has at least $(2 k+1-j)>k=m / 2$ worse friends, hence student j is good. For the other $n-k$ good students, every one of them has at least $k+1$ worse friends. Then

$$
\sum_{j=1}^{k}(2 k+1-j)+(n-k)(k+1) \leq 15 \cdot 2 k .
$$

Solving for n, we get

$$
n \leq 31.5-\left(\frac{31}{k+1}+\frac{k+1}{2}\right) \leq 31.5-\sqrt{62}<24 .
$$

Therefore, $n \leq 25$. For an example of $n=25$, in the odd case, we need to take $k=5$ (so m =9). Consider the 6×5 matrix M with $M_{i j}=$ $5(i-1)+j$. For $M_{1 j}$, let his friends be $M_{6 j}$, $M_{1 k}$ and $M_{2 k}$ for all $k \neq j$. For $M_{i j}$ with $1<i<$ 6, let his friends be $M_{6 j}, M_{(i-1) k}$ and $M_{(i+1) k}$ for all $k \neq j$. For $M_{6 j}$, let his friends be $M_{i j}$ and $M_{5 k}$ for all $i<6$ and $k \neq j$. It is easy to check 1 to 25 are good.

Pole and Polar

(continued from page 2)

Example 7. (1998 IMO) Let I be the incenter of triangle $A B C$. Let the incircle of $A B C$ touch the sides $B C$, $C A$ and $A B$ at K, L and M respectively. The line through B parallel to $M K$ meets the lines $L M$ and $L K$ at R and S respectively. Prove that angle RIS is acute.

Solution. Consider the pole-polar transformation with respect to the incircle. Due to tangency, the polars of B, K, L, M are lines $M K, B C, C A$, $A B$ respectively. Observe that B is sent to $B^{\prime}=I B \cap M K$ under the inversion with respect to the incircle. Since B^{\prime} is on line $M K$, which is the polar of B, by La Hire's theorem, B is on the polar of B^{\prime}. Since $M K \| R S$, so the polar of B ' is line $R S$. Since R, B, S are collinear, their polars concur at B^{\prime}.

Next, since the polars of K, L intersect at C and since L, K, S are collinear, their polars concur at C. Then the polar of S is $B^{\prime} C$. By the definition of polar, we get $I S \perp B^{\prime} C$. By a similar reasoning, we also get $I R \perp B^{\prime} A$. Then $\angle R I S=180^{\circ}-\angle A B^{\prime} C$.

To finish, we will show B^{\prime} is inside the circle with diameter $A C$, which implies $\angle A B^{\prime} C>90^{\circ}$ and hence $\angle R I S<90^{\circ}$. Let T be the midpoint of $A C$. Then

$$
\begin{aligned}
2 \overrightarrow{B^{\prime} T} & =\overrightarrow{B^{\prime} C}+\overrightarrow{B^{\prime} A} \\
& =\left(\overrightarrow{B^{\prime} K}+\overrightarrow{K C}\right)+\left(\overrightarrow{B^{\prime} M}+\overrightarrow{M A}\right) \\
& =\overrightarrow{K C}+\overrightarrow{M A} .
\end{aligned}
$$

Since $\overrightarrow{K C}$ and $\overrightarrow{M A}$ are nonparallel,

$$
B^{\prime} T<\frac{K C+M A}{2}=\frac{C L+A L}{2}=\frac{A C}{2} .
$$

Therefore, B^{\prime} is inside the circle with diameter $A C$.

