Mathematical Excalibur

Olympiad Corner

Below are the problems of the Team Selection Test 1 for the Dutch IMO team held in June， 2014.

Problem 1．Determine all pairs (a, b) of positive integers satisfying

$$
a^{2}+b \mid a^{2} b+a \text { and } b^{2}-a \mid a b^{2}+b .
$$

Problem 2．Let $\triangle A B C$ be a triangle． Let M be the midpoint of $B C$ and let D be a point on the interior of side $A B$ ． The intersection of $A M$ and $C D$ is called E ．Suppose that $|A D|=|D E|$ ． Prove that $|A B|=|C E|$ ．

Problem 3．Let a, b and c be rational numbers for which $a+b c, b+a c$ and $a+b$ are all non－zero and for which we have

$$
\frac{1}{a+b c}+\frac{1}{b+a c}=\frac{1}{a+b} .
$$

Prove that $\sqrt{(c-3)(c+1)}$ is rational．
Problem 4．Let $\triangle A B C$ be a triangle with $|A C|=2|A B|$ and let O be its circumcenter．Let D be the intersection of the angle bisector of $\angle A$ and $B C$ ．Let E be the orthogonal projection of O on $A D$ and let $F \neq D$ be a point on $A D$ satisfying $\quad|C D|=|C F|$ ．Prove that $\angle E B F=\angle E C F$ ．
（continued on page 4）

Editors：
張百康（CHEUNG Pak－Hong），Munsang College，HK高子眉（KO Tsz－Mei）
梁達榮（LEUNG Tat－Wing）
李 健 賢（LI Kin－Yin），Dept．of Math．，HKUST
吳 鏡 波（NG Keng－Po Roger），ITC，HKPU
Artist：楊秀英（YEUNG Sau－Ying Camille），MFA，CU
Acknowledgment：Thanks to Elina Chiu，Math．Dept．， HKUST for general assistance．

On－line：

http：／／www．math．ust．hk／mathematical excalibur／
The editors welcome contributions from all teachers and students．With your submission，please include your name， address，school，email，telephone and fax numbers（if available）．Electronic submissions，especially in MS Word， are encouraged．The deadline for receiving material for the next issue is April 10， 2015.
For individual subscription for the next five issues for the 14－15 academic year，send us five stamped self－addressed envelopes．Send all correspondence to：

Dr．Kin－Yin LI，Math Dept．，Hong Kong Univ．of Science and Technology，Clear Water Bay，Kowloon，Hong Kong

$$
\text { Fax: (852) } 23581643
$$ Email：makyli＠ust．hk

© Department of Mathematics，The Hong Kong University of Science and Technology

Polygonal Problems

Kin Yin Li

In geometry textbooks，we often come across problems about triangles and quadrilaterals．In this article we will present some problems about n－sided polygons with $n>4$ ．This type of problem appears every few years in math olympiads of many countries．

Example 1．Prove that if $A B C D E$ is a convex pentagon with all sides equal and $\angle A \geq \angle B \geq \angle C \geq \angle D \geq \angle E$ ，then it is a regular pentagon．

Solution．

Since

$$
A C=2 A B \sin \frac{\angle B}{2} \geq 2 C D \sin \frac{\angle D}{2}=C E,
$$

we get $\angle A E C \geq \angle E A C$ ．Next，

$$
\begin{aligned}
\angle E A C & =\angle A-\frac{180-\angle B}{2}=\angle A+\frac{\angle B}{2}-90^{\circ} \\
& \geq \angle E+\frac{\angle D}{2}-90^{\circ}=\angle E-\frac{180-\angle D}{2} \\
& =\angle A E C
\end{aligned}
$$

Hence，$\angle E A C=\angle A E C$ ．Then equality holds everywhere above so that $\angle A=\angle E$ and we are done．

Example 2．（Bulgaria，1979）In convex pentagon $A B C D E, \triangle A B C$ and $\triangle C D E$ are equilateral．Prove that if O is the center of $\triangle A B C$ and M, N are midpoints of $B D, A E$ respectively，then $\triangle O M E \sim$ $\triangle O N D$ ．

Solution．

Let P, Q be the midpoints of $B C, A C$ respectively．Observe that $\angle C O P=60^{\circ}$ ， $O C=2 O P, P M \| C D, \angle D C E=60^{\circ}$ and $E C$ $=D C=2 M P$ ．Then rotating about O by 60° clockwise and follow by doubling distance from O ，we see $\triangle O P M$ goes to $\triangle O C E$ ．Hence $\angle E O M=\angle C O P=60^{\circ}$ and $O E=2 O M$ ．Similarly we can rotate about O by 60° counterclockwise and double distance from O to bring $\triangle O Q N$ to $\triangle O C D$ ．Then $\angle D O N=60^{\circ}, O D=$ $2 O N$ and so $\triangle O M E \sim \triangle O N D$ ．

Example 3．（IMO 2005）Six points are chosen on the sides of an equilateral triangle $A B C$ ：A_{1}, A_{2} on $B C, B_{1}, B_{2}$ on $C A$ and C_{1}, C_{2} on $A B$ ，so that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths． Prove that $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent．

Solution．

Let P be the point inside $\triangle A B C$ such that $\Delta A_{1} A_{2} P$ is equilateral．Observe that $A_{1} P \| C_{1} C_{2}$ and $A_{1} P=C_{1} C_{2}$ ．So $A_{1} P C_{1} C_{2}$ is a rhombus．Similarly，$B_{1} P B_{2} B_{1}$ is a rhombus．So $\Delta C_{1} B_{2} P$ is equilateral．Let $\alpha=\angle B_{2} B_{1} A_{2}, \beta=\angle B_{1} A_{2} A_{1}$ and $\gamma=\angle$ $C_{1} C_{2} A_{1}$ ．Then α and β are external angles of $\triangle C B_{1} A_{2}$ with $\angle C=60^{\circ}$ ．So $\alpha+\beta=240^{\circ}$ ．Now $\angle B_{2} P A_{2}=\alpha$ and $\angle C_{1} P A_{1}$ $=\gamma$ ．So $\alpha+\gamma=360^{\circ}-\left(\angle C_{1} P B_{2}+\angle A_{1} P A_{2}\right)$ $=240^{\circ}$ ．So $\beta=\gamma$ ．Similarly，$\angle C_{1} B_{2} B_{1}=\beta$ ． Hence，$\Delta A_{1} A_{2} B_{1}, \Delta B_{1} B_{2} C_{1}$ and Δ $C_{1} C_{2} A_{1}$ are congruent，which implies Δ $A_{1} B_{1} C_{1}$ is equilateral．Since sides of $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ have equal lengths，lines $A_{1} B_{2}, \quad B_{1} C_{2}$ and $C_{1} A_{2}$ are the perpendicular bisectors of the sides of $\Delta A_{1} B_{1} C_{1}$ and the result follows．

Example 4. (Czechoslovakia, 1974) Prove that if a circumscribed hexagon $A B C D E F$ satisfies
$A B=B C, C D=D E$ and $E F=F A$,
then the area of $\triangle A C E$ is less than or equal to the area of $\triangle B D F$.

Solution. Let O be the circumcenter of hexagon $A B C D E F$ and R be the radius of the circumcircle. Let

$$
\alpha=\angle C A E, \beta=\angle A E C, \gamma=\angle A C E
$$

From the given conditions on the sides, we get

$$
\begin{aligned}
& \angle A O B=\angle B O C=\beta \\
& \angle C O D=\angle D O E=\alpha \\
& \angle E O F=\angle F O A=\gamma
\end{aligned}
$$

Let $[X Y Z]$ denote the area of $\triangle X Y Z$. We have

$$
\begin{aligned}
{[A C E] } & =\frac{E C \cdot C A \cdot A E}{4 R} \\
& =\frac{2 R \sin \alpha \cdot 2 R \sin \beta \cdot 2 R \sin \gamma}{4 R} \\
& =2 R^{2} \sin \alpha \sin \beta \sin \gamma .
\end{aligned}
$$

Similarly,

$$
[B D F]=2 R^{2} \sin \frac{\alpha+\beta}{2} \sin \frac{\beta+\gamma}{2} \sin \frac{\gamma+\alpha}{2}
$$

Now for positive α, β, γ satisfying $\alpha+\beta+\gamma=180^{\circ}$, we have

$$
\begin{aligned}
& \sin ^{2} \alpha \sin ^{2} \beta \sin ^{2} \gamma \\
= & (\sin \alpha \sin \beta)(\sin \gamma \sin \alpha)(\sin \beta \sin \gamma) \\
= & \prod_{c y c} \frac{\cos (\alpha-\beta)-\cos (\alpha+\beta)}{2} \\
\leq & \prod_{c y c} \frac{1-\cos (\alpha+\beta)}{2} \\
= & \sin ^{2} \frac{\alpha+\beta}{2} \sin ^{2} \frac{\beta+\gamma}{2} \sin ^{2} \frac{\gamma+\alpha}{2} .
\end{aligned}
$$

Therefore, $[A C E] \leq[B D F]$.

Example 5. (IMO 1996) Let $A B C D E F$

 be a convex hexagon such that $A B$ is parallel to $D E, B C$ is parallel to $E F$ and $C D$ is parallel to $F A$. Let R_{A}, R_{C}, R_{E} be the circumradii of triangles $F A B, B C D$, $D E F$ respectively, and let P denote the perimeter of the hexagon. Prove that$$
R_{A}+R_{C}+R_{E} \geq \frac{P}{2}
$$

Solution. Let a, b, c, d, e, f denote the lengths of the sides $A B, B C, C D, D E$, $E F, F A$ respectively. By the parallel
conditions, we have $\angle A=\angle D, \angle B=\angle E$, $\angle C=\angle F$.

Consider rectangle $P Q R S$ such that A is on $P Q ; F, E$ are on $Q R ; D$ is on $R S$ and B, C are on $S P$.

We have $B F \geq P Q=S R$. So $2 B F \geq P Q+S R$, which is the same as

$$
2 B F \geq(a \sin B+f \sin C)+(c \sin C+d \sin B) .
$$

Similarly,
$2 B D \geq(c \sin A+b \sin B)+(c \sin B+f \sin A)$, $2 D F \geq(c \sin C+d \sin A)+(a \sin A+b \sin C)$.

Next, by the extended sine law,

$$
R_{A}=\frac{B F}{2 \sin A}, R_{C}=\frac{B D}{2 \sin C}, R_{E}=\frac{D E}{2 \sin E}
$$

Then using the inequalities and equations above, we have
$R_{A}+R_{C}+R_{E}$
$\geq \frac{a}{4}\left(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B}\right)+\cdots+\frac{f}{4}\left(\frac{\sin A}{\sin F}+\frac{\sin F}{\sin A}\right)$
$\geq \frac{a+b+c+d+e+f}{2}=\frac{P}{2}$.
Example 6. (Great Britain, 1988) Let four consecutive vertices A, B, C, D of a regular polygon satisfy

$$
\frac{1}{A B}=\frac{1}{A C}+\frac{1}{A D}
$$

Determine the number of sides of the polygon.

Solution. Let the circumcircle of the polygon have center O and radius R. Let α $=\angle A O B$, then $0<3 \alpha=\angle A O D<360^{\circ}$. So $0<\alpha<120^{\circ}$. Also, from

$$
\begin{gathered}
A B=2 R \sin \frac{\alpha}{2}, \quad A C=2 R \sin \alpha, \\
A D=2 R \sin \frac{3 \alpha}{2},
\end{gathered}
$$

we get

$$
\frac{1}{\sin \frac{\alpha}{2}}=\frac{1}{\sin \alpha}+\frac{1}{\sin \frac{3 \alpha}{2}}
$$

Clearing denominators, we have

$$
\begin{aligned}
0 & =\sin \alpha \sin \frac{3 \alpha}{2}-\left(\sin \alpha+\sin \frac{3 \alpha}{2}\right) \sin \frac{\alpha}{2} \\
& =\frac{1}{2}\left(\cos \frac{\alpha}{2}-\cos \frac{5 \alpha}{2}\right)-\frac{1}{2}\left(\cos \frac{\alpha}{2}-\cos \frac{3 \alpha}{2}\right) \\
& -\frac{1}{2}(\cos \alpha-\cos 2 \alpha) \\
& =\frac{1}{2}\left(\left(\cos \frac{3 \alpha}{2}+\cos 2 \alpha\right)-\left(\cos \alpha+\cos \frac{5 \alpha}{2}\right)\right) \\
& =\cos \frac{7 \alpha}{4}\left(\cos \frac{\alpha}{4}-\cos \frac{3 \alpha}{4}\right) \\
& =2 \cos \frac{7 \alpha}{4} \sin \frac{\alpha}{4} \sin \frac{\alpha}{2} .
\end{aligned}
$$

Then $7 \alpha / 4=90^{\circ}$, that is $\alpha=360^{\circ} / 7$. So the polygon has 7 sides.

Example 7. (Austria, 1973) Prove that if the angles of a convex octagon are all equal and the ratio of all pairs of adjacent sides is rational, then each pair of opposite sides has equal length.

Solution. Without loss of generality, we may assume the sides of such a polygon $A_{1} A_{2} \ldots A_{8}$ are rational (since the conclusion is the same for octagons similar to such an octagon). Now the sum of all angles of the octagon is $6 \times 180^{\circ}$. Hence each angle is 45°.

Let v_{n} be the vector from A_{n} to A_{n+1} for $n=1,2, \ldots, 8$ (with $A_{9}=A_{1}$). Then the angle between v_{n} and v_{n+1} at the origin is 45°. Observe that the sum of these vectors is zero since we start at A_{1} and traverse the octagon once to return to A_{1}.

Let i and j be a pair of unit vectors perpendicular to each other at the origin. By rotation, we may assume v_{1} is a vector in the i direction and v_{3} is in the j direction. Then $v_{1}+v_{5}=x i$ and $v_{3}+v_{7}$ $=y j$ for some rational x and y. Also,

$$
v_{2}+v_{4}+v_{6}+v_{8}=r \sqrt{2} i \pm r \sqrt{2} j
$$

for some rational r. Then

$$
(x+r \sqrt{2}) i+(y \pm r \sqrt{2}) j=\sum_{n=1}^{8} v_{n}=0
$$

Since, x and r are rational, we must have $x=r=0$. That is, $v_{5}=-v_{1}$. By rotating the i, j vectors by 45°, similarly we get $v_{6}=-v_{2}$. Then also $v_{7}=-v_{3}$ and $v_{8}=-v_{4}$. The result follows.

Problem Corner

We welcome readers to submit their solutions to the problems posed below for publication consideration. The solutions should be preceded by the solver's name, home (or email) address and school affiliation. Please send submissions to Dr. Kin Y. Li, Department of Mathematics, The Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon, Hong Kong. The deadline for sending solutions is April 10, 2015.

Problem 461. Inside rectangle $A B C D$, there is a circle. Points W, X, Y, Z are on the circle such that lines $A W, B X, C Y$, $D Z$ are tangent to the circle. If $A W=3$, $B X=4, C Y=5$, then find $D Z$ with proof.

Problem 462. For all $x_{1}, x_{2}, \ldots, x_{n} \geq 0$, let $x_{n+1}=x_{1}$, then prove that

$$
\sum_{k=1}^{n} \sqrt{\frac{1}{\left(x_{k}+1\right)^{2}}+\frac{x_{k+1}^{2}}{\left(x_{k+1}+1\right)^{2}}} \geq \frac{n}{\sqrt{2}} .
$$

Problem 463. Let S be a set with 20 elements. N 2-element subsets of S are chosen with no two of these subsets equal. Find the least number N such that among any 3 elements in S, there exist 2 of them belong to one of the N chosen subsets.

Problem 464. Determine all positive integers n such that for n, there exists an integer m with $2^{n}-1$ divides $m^{2}+289$.

Problem 465. Points A, E, D, C, F, B lie on a circle Γ in clockwise order. Rays $A D, B C$, the tangents to Γ at E and at F pass through P. Chord $E F$ meets chords $A D$ and $B C$ at M and N respectively. Prove that lines $A B, C D$, $E F$ are concurrent.

Solutions

Problem 456. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are non-negative and their sum is 1 . Prove that there exists a permutation σ of $\{1,2, \cdots, n\}$ such that

$$
x_{\sigma(1)} x_{\sigma(2)}+x_{\sigma(2)} x_{\sigma(3)}+\cdots+x_{\sigma(n)} x_{\sigma(1)} \leq 1 / n .
$$

Solution. CHAN Long Tin (Cambridge University, Year 3), Ioan Viorel CODREANU (Secondary School Satulung, Maramures, Romania), KWOK Man Yi (Baptist Lui Ming Choi Secondary School, S4), Samiron SADHUKHAN (Kendriya Vidyalaya,

India) and WONG Yat (G. T. (Ellen Yeung) College).

Assume the contrary is true. Let $\sigma(n+1)=$ $\sigma(1)$ for all permutations σ. For $1 \leq i<j \leq n$, the terms $x_{i} x_{j}$ and $x_{j} x_{i}$ appear a total of $2 n(n-2)!$ times in

$$
\sum_{n \in S_{n}} \sum_{k=1}^{n} x_{\sigma(k)} x_{\sigma(k+1)}
$$

So, we have

$$
\begin{aligned}
\frac{n!}{n} & <\sum_{\sigma \in S_{n} k=1}^{n} x_{\sigma(k)} x_{\sigma(k+1)} \\
& =2 n(n-2)!\sum_{1 \leq i<j \leq n} x_{i} x_{j} \\
& =n(n-2)!\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right] \\
& =n(n-2)!\left(1-\sum_{i=1}^{n} x_{i}^{2}\right) .
\end{aligned}
$$

This simplifies to $\left({ }^{*}\right) \sum_{i=1}^{n} x_{i}^{2}<\frac{1}{n}$. However, by the Cauchy-Schwarz inequality,

$$
n \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} 1^{2} \sum_{i=1}^{n} x_{i}^{2} \geq\left(\sum_{i=1}^{n} x_{i}\right)^{2}=1
$$

which contradicts (*).

Problem 457. Prove that for each $n=$ $1,2,3, \ldots$, there exist integers a, b such that if integers x, y are relatively prime, then $\sqrt{(a-x)^{2}+(b-y)^{2}}>n$.

Solution. Samiron SADHUKHAN

 (Kendriya Vidyalaya, India) and WONG Yat (G. T. (Ellen Yeung) College).There are $(2 n+1)^{2}$ ordered pairs (r, s) of integers satisfying $|r|,|s| \leq n$. Assign a distinct prime number $p_{r, s}$ to each such (r, s). By the Chinese remainder theorem, there exist integers a, b such that for all integers r, s satisfying $|r|,|s| \leq n$, we have $a \equiv r\left(\bmod p_{r, s}\right)$ and $b \equiv s\left(\bmod p_{r, s}\right)$.

Let integers x, y be relatively prime. Assume (x, y) has distance at most n from (a, b). Then $|a-x| \leq n$ and $|b-y| \leq n$. Let $a-x=r$ and $b-y=s$. Then $x=a-r$ and $y=b-s$ are multiples of $p_{r, s}$, contradicting $\operatorname{gcd}(x, y)=1$. Therefore,

$$
\sqrt{(a-x)^{2}+(b-y)^{2}}>n
$$

Problem 458. Nonempty sets A_{1}, A_{2}, A_{3} form a partition of $\{1,2, \ldots, n\}$. If $x+y=z$ have no solution with x in A_{i}, y in A_{j}, z in A_{k} and $\{i, j, k\}=\{1,2,3\}$, then prove that A_{1},
A_{2}, A_{3} cannot have the same number of elements.

Solution. Oliver GEUPEL (Brühl, NRW, Germany) and John GLIMMS.

Without loss of generality, say $1 \in A_{1}$ and the smallest element in $A_{2} \cup A_{3}$ is $b \in A_{2}$. Let the elements in A_{3} be $c_{1}, c_{2}, \ldots, c_{k}$ in increasing order.

Assume $c_{i+1}-c_{i}=1$ for some i. Then take i to be the smallest possible. Since $b \in A_{2}$, the equations $\left(c_{i}-b\right)+b=c_{i}$ and $\left(c_{i}-b+1\right)+b=c_{i+1}$ imply $c_{i}-b$ and $c_{i}-b+1$ are both not in A_{1}.

Since $1 \in A_{1}$ and $\left(c_{i}-b\right)+1=c_{i}-b+1$, so either $c_{i}-b+1$ and $c_{i}-b$ both are in A_{2} or both are in A_{3}. Since i is smallest such that $c_{i+1}-c_{i}=1$, so $c_{i}-b+1$ and $c_{i}-b$ cannot be in A_{3}. However, $c_{i}-b+1$ and $c_{i}-b$ in $A_{2}, b-1$ in A_{1} (by property of b) and $(b-1)+\left(c_{i}-b+1\right)=c_{i}$ lead to contradiction. So $c_{i+1}-c_{i} \geq 2$ for all i.

Finally, since $1+\left(c_{i}-1\right)=c_{i}$, we get $c_{i}-1 \notin B$. Hence $c_{i}-1 \in A$. Then A_{1} contains $1, c_{1}-1, c_{2}-1, \ldots, c_{k}-1$. Therefore, A_{1} has more elements than A_{3}.

Problem 459. H is the orthocenter of acute $\triangle A B C . D, E, F$ are midpoints of sides $B C, C A, A B$ respectively. Inside $\triangle A B C$, a circle with center H meets $D E$ at $P, Q, E F$ at $R, S, F D$ at T, U. Prove that $C P=C Q=A R=A S=B T=B U$.

Solution. John GLIMMS.

Let lines $A H$ and $F E$ meet at J. From $A H \perp B C$ and $B C|\mid F E$, we get $F E$ is perpendicular to $A J$ and $H J$. By folding along $D E, E F$ and $F D$, we can make a tetrahedron having $\triangle D E F$ as the base and points A, B, C meet at a point I. Then $F E$ is perpendicular to $I J$ and $H J$. So $F E$ is perpendicular to the plane through I, J, H. Then $F E \perp I H$. Similarly, $D E \perp I H$. Then the plane through D, E, F is perpendicular to $I H$. By Pythagoras' theorem, $I H^{2}+r^{2}=C P^{2}=C Q^{2}=A R^{2}=$ $A S^{2}=B T^{2}=B V^{2}$, where r is the radius of the circle.

Other commended solvers: Adnan ALI (Atomic Energy Central School 4, Mumbai, India), Andrea FANCHINI
(Cantú, Italy), William FUNG, Oliver GEUPEL (Brühl, NRW, Germany), MANOLOUDIS Apostolis (4 High School of Korydallos, Piraeus, Greece), Samiron SADHUKHAN (Kendriya Vidyalaya, India), Titu ZVONARU (Comăneşti, Romania) and Neculai STANCIU ("George Emil Palade" Secondary School, Buzău, Romania).

Problem 460. If $x, y, z>0$ and $x+y+z+2$ $=x y z$, then prove that

$$
x+y+z+6 \geq 2(\sqrt{y z}+\sqrt{z x}+\sqrt{x y})
$$

Solution. Adnan ALI (Atomic Energy Central School 4, Mumbai, India), CHAN Long Tin (Cambridge University, Year 3), Ioan Viorel CODREANU (Secondary School Satulung, Maramures, Romania), Oliver GEUPEL (Brühl, NRW, Germany), KWOK Man Yi (Baptist Lui Ming Choi Secondary School, S4), Vijaya Prasad NULLARI (Retired Principal, AP Educational Service, India), Nicuşor ZLOTA ("Traian Vuia" Technical College,Focşani, Romania) and Titu ZVONARU (Comăneşti, Romania).
Let

$$
a=\frac{1}{1+x}, b=\frac{1}{1+y}, c=\frac{1}{1+z} .
$$

Using $x+y+z+2=x y z$, we get $a+b+c=$ 1. Then $x=(1-a) / a=(b+c) / a$ and similarly $y=(c+a) / b$ and $z=(a+b) / c$. By the AM-GM inequality, we have

$$
\begin{aligned}
& x+y+z+6 \\
= & \sum_{c y c} \frac{b+c}{a}+6 \\
= & \sum_{c y c}\left(\frac{c+a}{c}+\frac{a+b}{b}\right) \\
\geq & 2 \sum_{c y c} \sqrt{\frac{(c+a)(a+b)}{b c}} \\
= & 2(\sqrt{y z}+\sqrt{z x}+\sqrt{x y}) .
\end{aligned}
$$

Other commended solvers: Paolo PERFETTI (Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, via della ricerca scientifica, Roma, Italy), WONG Yat (G. T. (Ellen Yeung) College).

Olympiad Corner

(Continued from page 1)
Problem 5. On each of the 2014^{2} squares of a 2014×2014-board a light
bulb is put. Light bulbs can be either on or off. In the starting situation a number of light bulbs are on. A move consists of choosing a row or column in which at least 1007 light bulbs are on and changing the state of all 2014 light bulbs in this row or column (from on to off or from off to on). Find the smallest non-negative integer k such that from each starting situation there is a finite sequence of moves to a situation in which at most k light bulbs are on.

Polygonal Problems

(Continued from page 2)

Example 8. (IMO 1997) Equilateral triangles $A B K, B C L, C D M, D A N$ are constructed inside the square $A B C D$. Prove that the midpoints of the four segments $K L, L M, M N, N K$ and the midpints of the eight segments $A K, B K$, $B L, C L, C M, D M, D N, A N$ are the twelve vertices of a regular dodecagon.

Solution.

Let us denote the midpoints of segments $L M, A N, B L, M N, B K, C M, N K, C L, D N$, $K L, D M, A K$ by $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}$, $P_{8}, P_{9}, P_{10}, P_{11}, P_{12}$, respectively. To prove the dodecagon

$$
P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8} P_{9} P_{10} P_{11} P_{12}
$$

is regular, we observe that $B L=B A$ and $\angle A B L=30^{\circ}$. Then $\angle B A L=75^{\circ}$. Similarly $\angle D A M=75^{\circ}$. So

$$
\angle L A M=\angle B A L+\angle D A M-\angle B A D=60^{\circ} .
$$

Along with $A L=A M$, we see triangle $A L M$ is equilateral.

Looking at triangles $O L M$ and $A L N$, we get $O P_{1}=1 / 2 L M, O P_{2}=1 / 2 A L$ and $O P_{2} \| A L$. Hence, $O P_{1}=O P_{2}, \angle P_{1} O P_{2}=\angle P_{1} A L=30^{\circ}$, $\angle P_{2} O M=\angle D A L=15^{\circ}$ and $\angle P_{2} O P_{3}=$ $2 \angle P_{2} O M=30^{\circ}$. By symmetry, we can conclude that the dodecagon is regular.

Example 9. (IMO 1992, Shortlisted Problem from India) Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions:
(i) its sides lengths are $1,2,3, \ldots, 1992$ in some order;
(ii) the polygon is circumscribable about a circle.

Solution. For a positive number r, let us draw a circle of radius r and let us draw a polygonal path $A_{1} A_{2} \ldots A_{1993}$ such that for $i=1$ to 1992, side $A_{i} A_{i+1}$ is tangent to the circle at a point T_{i} and $T_{1992} A_{1993}=$ $A_{1} T_{1}, T_{1} A_{2}=A_{2} T_{2}, \ldots, T_{1991} A_{1992}=$ $A_{1992} T_{1992}$.

To achieve condition (i), we need $A_{1} A_{2}$, $A_{2} A_{3}, \ldots, A_{1992} A_{1993}$ to be a permutation of $1,2, \ldots, 1992$. This can be done as follow:

If $i \equiv 1(\bmod 4)$, then let $A_{i} T_{i}=1 / 2$.
If $i \equiv 3(\bmod 4)$, then let $A_{i} T_{i}=3 / 2$.
If $i \equiv 0,2(\bmod 4)$, then let $A_{i} T_{i}=i-3 / 2$.
We can check that the lengths of $A_{i} A_{i+1}$ for $i=1$ to 1992 are $1,2,4,3,5,6,8$, 7,..., 1989,1990,1992,1991.

To achieve condition (ii), we define a function

$$
\begin{aligned}
f(r) & =\sum_{i=1}^{1992} \angle A_{i} O A_{i+1} \\
& =2 \sum_{i=1}^{1992} \arctan \frac{A_{i} T_{i}}{r} .
\end{aligned}
$$

Observe that $f(r)$ is a continuous function on $(0, \infty)$. As r tends to $0, f(r)$ tends to infinity and as r tends to infinity, $f(r)$ tends to 0 . By the intermediate value theorem, there exists r such that $f(r)=2 \pi$. Then $A_{1993}=A_{1}$ and $A_{1} A_{2} \ldots A_{1992}$ is a desired polygon.

We remark that if 1992 is replaced by other positive integers of the form $4 k$, then there are such $4 k$-sided polygon.

