Directions: This is a three hour test. No calculators are allowed. For every problem, provide complete details of your solution.

Problem 1. Let \(n \) be a positive integer and \(A, B \) be \(n \times n \) matrices over the complex numbers. Prove that \(A \) and \(B \) have a common eigenvalue if and only if \(AX = XB \) for some \(n \times n \) matrix \(X \neq 0 \).

Problem 2. Find all continuous functions \(y : [0, \infty) \rightarrow \mathbb{R} \) such that \(y(0) = 0 \), \(y \) is differentiable on \((0, \infty) \) satisfying \(y'(x) = \int_{0}^{x} \sin(y(u)) \, du + \cos x \) for all \(x > 0 \).

Problem 3. Let \(a \) and \(b \) be positive integers with \(a > 1 \). If \(a \) and \(b \) are both odd or both even, then prove that \(2^a - 1 \) does not divide \(3^b - 1 \).

Problem 4. Let \(f : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} \) be continuous such that for every \(x \in [0, 1] \) and \(y_0 \neq y_1 \) in \(\mathbb{R} \), we have
\[
\frac{1}{2} \leq \frac{f(x, y_0) - f(x, y_1)}{y_0 - y_1} \leq \frac{3}{2}.
\]
Prove that there exists a unique real-valued continuous function \(h \) on \([0, 1] \) such that for all \(x \in [0, 1] \), \(f(x, h(x)) = 0 \).

Problem 5. Let \(u \cdot v \) denote the usual inner product of \(u, v \in \mathbb{R}^n \). For positive integer \(k < n \), let \(G(k, n) \) be the set of all \(k \)-dimensional linear subspaces in \(\mathbb{R}^n \). For \(v \in \mathbb{R}^n \) and a linear subspace \(S \) in \(\mathbb{R}^n \), let \(d(v, S) \) denote the usual distance from \(v \) to \(S \). For \(V, U \in G(k, n) \), let \(B(V) = \{ v \mid v \in V, v \cdot v = 1 \} \). For \(V, U \in G(k, n) \), let \(d(V, U) = \max \{ d(v, U) \mid v \in B(V) \} \).

(a) Prove that for \(V, W, U \in G(k, n) \), \(d(V, U) \leq d(V, W) + d(W, U) \).

(b) Let \(\{ v_1, v_2, \ldots, v_k \} \), \(\{ w_1, w_2, \ldots, w_k \} \) be orthonormal basis of \(V, W \in G(k, n) \) respectively. Let \(A \) be the \(k \times k \) matrix with \((i, j) \) entry equal \(v_i \cdot w_j \). Let \(\lambda \) be the smallest eigenvalue of \(A A^T \). Determine the value of \(d(V, W) \) in terms of \(\lambda \).

(c) Prove that \(d(V, W) = d(W, V) \) for all \(V, W \in G(k, n) \).

Problem 6. Let \(S = \{ z \mid z \in \mathbb{C}, \ 0 < |z| < 2 \} \) and \(f : S \rightarrow \mathbb{C} \) be a holomorphic function such that \(\text{Re} \ f(z) \geq 0 \) and \(\text{Im} \ f(z) \geq 0 \) for all \(z \in S \). Prove that \(f \) has a removable singularity at 0.

– End of Paper –