2023 HKUST Undergraduate Math Competition - Junior Level

No Calculators are allowed. For each problem, provide complete details of your solution.

Problem 1. (15 points) Let P be a convex polygon, prove that there exists a straight line that divides P into two polygons with equal area and equal perimeter. (For example, if P is a square, any line passing through the center of P is such a line).

Problem 2.(15 points) Show that the improper integral

$$
\lim _{B \rightarrow \infty} \int_{0}^{B} \sin x \sin x^{2} d x
$$

hint: using the integration by parts.

Problem 3.(15 points) Let p, q be distinct prime numbers. Prove that

$$
\left\lfloor\frac{p}{q}\right\rfloor+\left\lfloor\frac{2 p}{q}\right\rfloor+\cdots+\left\lfloor\frac{(q-1) p}{q}\right\rfloor=\frac{(p-1)(q-1)}{2} .
$$

Here $\lfloor x\rfloor$ denote the largest positive integer not exceeding x for any real number x. For example, $\lfloor\pi\rfloor=\lfloor 3.14\rfloor=3$.

Problem 4. (15 points) Suppose that a sequence $b_{1}, b_{2}, b_{3}, \cdots$ satisfies $0<$ $b_{n} \leq b_{2 n}+b_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} b_{n}$ diverges.

Problem 5. (15 points) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be periodic functions such that $\lim _{x \rightarrow \infty}(f(x)-g(x))=0$. Prove that $f=g$.

Problem 6. (15 points) (1) Let $a>2$, suppose x_{0} is a root of $x^{2}-a x+1=0$,
prove that $y_{0}=\sqrt{x_{0}}$ is a root of $y^{2}-\sqrt{a+2} y+1=0$.
(2) Evaluate

$$
\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\ldots}}}
$$

Express your answer in the form $\frac{a+b \sqrt{c}}{d}$ where a, b, c, d are integers.

Problem 7.(10 points) Prove that every $n \times n$ invertible real matrix A can be written as $A=B K$, where B is an $n \times n$ positive definite matrix and K is an $n \times n$ orthogonal matrix , i.e., $K^{T} K=I_{n}$.

