2023 HKUST Undergraduate Math Competition - Senior Level

No Calculators are allowed. For each problem, provide complete details of your solution.

Problem 1. (15 points) Let \mathbb{C}^{*} be the complex plane with 0 removed, let $f: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ be a holomorphic map that is a bijection. Show that there is a number $a \in \mathbb{C}^{*}$ such that either $f(z)=a z$ or $f(z)=a z^{-1}$.

Problem 2. (15 points) Let V be the space of complex valued continuous functions $f(x)$ on \mathbb{R} satisfying the periodicity condition $f(x+1)=f(x)$. For any positive integer n, we define n-th Hecke operator T_{n} on a continuous function $f(x)$ by

$$
\left(T_{n} f\right)(x)=\sum_{j=0}^{n-1} f\left(\frac{1}{n} x+\frac{j}{n}\right) .
$$

(1) Prove that if $f(x) \in V$, then so is $\left(T_{n} f\right)(x)$. So we have an linear operator $T_{n}: V \rightarrow V$.
(2) Prove that $T_{m} T_{n}=T_{m n}$.
(3) Can you find two common eigenfunctions for $T_{n}(n=1,2, \ldots)$? hint: consider the functions $e^{2 \pi i m x}$ first.

Problem 3. (15 points) Let n be a positive integer, and let $S(n)$ denote the sum of its decimal digits. For example, $S(2357)=2+3+5+7=17$. Prove the following:
(1) $9 \mid S(n)-n$;
(2) $S\left(n_{1}+n_{2}\right) \leq S\left(n_{1}\right)+S\left(n_{2}\right)$;
(3) $S\left(n_{1} n_{2}\right) \leq \min \left\{n_{1} S\left(n_{2}\right), n_{2} S\left(n_{1}\right)\right\}$;
(4) $S\left(n_{1} n_{2}\right) \leq S\left(n_{1}\right) S\left(n_{2}\right)$.
(5) Suppose n is a positive integer such that in its decimal expansion, each digit (except the first digit) is greater than the digit to its left. What is $S(9 n)$, and why?

Here n, n_{1} and n_{2} denote any positive integers.

Problem 4. (15 points) Let R be the ring of analytic functions on the complex plane, is R an integral domain? why?

Problem 5. (15 points) Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $\sum_{i=1}^{n} \frac{1}{1+x_{i}}=1$. Prove that $\sum_{i=1}^{n} \sqrt{x_{i}} \geq(n-1) \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}}$.

Problem 6. (15 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice-differentiable function such that $f(0)=1, f^{\prime}(0)=0$, and for all $x \in[0, \infty)$,

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0 .
$$

Show that for all $x \in[0, \infty)$,

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x} .
$$

Problem 7. (10 points) Let A be an $n \times n$ symmetric real matrix with (i, j)-entry $a_{i j}=a_{j i}, A$ defines a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{T} A x=$ $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$. Suppose $c=\left(c_{1}, \ldots, c_{n}\right)^{T} \in \mathbb{R}^{n}$ satisfies the conditions that (1) c is a unit vector, i.e, $c_{1}^{2}+\cdots+c_{n}^{2}=1$
(2) $f(c) \geq f(v)$ for all unit vector $v \in \mathbb{R}^{n}$. Prove that c is an eigenvector of A and the eigenvalue of c is the largest eigenvalue of A.

