Solutions to 2023 HKUST Math Competition - Senior Level

Problem 1. (15 points) Let \mathbb{C}^{*} be the complex plane with 0 removed, let $f: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ be a holomorphic map that is a bijection. Show that there is a number $a \in \mathbb{C}^{*}$ such that either $f(z)=a z$ or $f(z)=a z^{-1}$.

Proof If f has essential singularity By Great Picard theorem, in arbitrary neighborhood U of 0 the set $f(U-\{0\})$ exhausts all elements in \mathbb{C}^{*} except one value. This violates the condition f is a bijection. Therefore f has pole or removable singularity at 0 . Similarly f has pole or removable singularity regarded as a function near ∞. This implies f extends to a holomorphic map $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of degree one, and thus must be an automorphism of \mathbb{P}^{1}, which we know is of form $f(z)=\frac{a z+b}{c z+d}$ for some constant $a, b, c, d \in \mathbb{C}$. Compare to the condition of f on \mathbb{C}, we then have $f(0)=0, f(\infty)=\infty$ or $f(0)=\infty, f(\infty)=0$. In first case one gets $b=0=c$, and then $f(z)=(a / d) z$. In the second case one gets $d=0=a$, thus $f(z)=(b / c) z^{-1}$. This proves the claim.

Problem 2. (15 points) Let V be the space of complex valued continuous functions $f(x)$ on \mathbb{R} satisfying the periodicity condition $f(x+1)=f(x)$. For any positive integer n, we define n-th Hecke operator T_{n} on a continuous function $f(x)$ by

$$
\left(T_{n} f\right)(x)=\sum_{j=0}^{n-1} f\left(\frac{1}{n} x+\frac{j}{n}\right)
$$

(1) Prove that if $f(x) \in V$, then so is $\left(T_{n} f\right)(x)$. So we have an linear operator $T_{n}: V \rightarrow V$.
(2) Prove that $T_{m} T_{n}=T_{m n}$.
(3) Can you find two common eigenfunctions for $T_{n}(n=1,2, \ldots)$? hint: consider the functions $e^{2 \pi i m x}$ first.

Answer: (1)

$$
\begin{aligned}
\left(T_{n} f\right)(x+1) & =\sum_{j=0}^{n-1} f\left(\frac{1}{n}(x+1)+\frac{j}{n}\right) \\
& =\sum_{j=0}^{n-1} f\left(\frac{1}{n} x+\frac{j+1}{n}\right) \\
& =\sum_{j=1}^{n-1} f\left(\frac{1}{n} x+\frac{j}{n}\right)+f\left(\frac{1}{n} x+1\right) \\
& =\sum_{j=1}^{n-1} f\left(\frac{1}{n} x+\frac{j}{n}\right)+f\left(\frac{1}{n} x\right) \\
& =\sum_{j=0}^{n-1} f\left(\frac{1}{n} x+\frac{j}{n}\right)=\left(T_{n} f\right)(x)
\end{aligned}
$$

This proves $T_{n} f \in V$.

$$
\begin{equation*}
\left(T_{m} T_{n} f\right)(x)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} f\left(\frac{1}{m n} x+\frac{i}{m n}+\frac{j}{n}\right)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} f\left(\frac{1}{m n} x+\frac{i+m j}{m n}\right) \tag{2}
\end{equation*}
$$

Note that when i runs through 0 to $m-1$ and j runs through 0 to $n-1$, $i+m j$ runs through 0 to $m n-1$, so $\left(T_{m} T_{n} f\right)(x)=\left(T_{m n} f\right)(x)$.
(3) The constant function 1 is an common eigenfunction $T_{n} 1=n=n \cdot 1$. A less obvious common eigenfunction is $f_{s}(x)=\sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}}{n^{s}}$, where s is a complex number with re $s>1$ (this condition is for the convergence). Then $T_{n} f_{s}(x)=n^{1-s} f_{s}(x)$.

Problem 3. (15 points) Let n be a positive integer, and let $S(n)$ denote the sum of its decimal digits. For example, $S(2357)=2+3+5+7=17$. Prove the following:
(1) $9 \mid S(n)-n$;
(2) $S\left(n_{1}+n_{2}\right) \leq S\left(n_{1}\right)+S\left(n_{2}\right)$;
(3) $S\left(n_{1} n_{2}\right) \leq \min \left\{n_{1} S\left(n_{2}\right), n_{2} S\left(n_{1}\right)\right\}$;
(4) $S\left(n_{1} n_{2}\right) \leq S\left(n_{1}\right) S\left(n_{2}\right)$.
(5) Suppose n is a positive integer such that in its decimal expansion, each digit (except the first digit) is greater than the digit to its left. What is $S(9 n)$, and why?

Here n, n_{1} and n_{2} denote any positive integers.

Proof

(1). Let $n=\overline{a_{k} a_{k-1} \cdots a_{0}}$. Then $S(n)=a_{k}+a_{k-1}+\cdots+a_{0}$ and $n=a_{k} * 10^{k}+a_{k-1} * 10^{k-1}+\cdots+a_{0}$. Since $10 \equiv 1(\bmod 9)$, obviously

$$
n \equiv a_{k}+a_{k-1}+\cdots+a_{0} \quad(\bmod 9) \equiv S(n) \quad(\bmod 9) .
$$

(2). Suppose $n_{1}=\overline{a_{k} a_{k}-1 \cdots a_{0}}, n_{2}=\overline{b_{h} b_{h}-1 \cdots b_{0}}$, and $n_{1}+n_{2}=$ $\overline{c_{s} c_{s-1} \cdots c_{0}}$. Let t be least such that $a_{i}+b_{i}<10$ for all $i<t$. Then $a_{t}+b_{t} \geq 10$ and hence $c_{t}=a_{t}+b_{t}-10$ and $c_{t+1} \leq a_{t+1}+b_{t+1}+1$. We obtain

$$
\sum_{i=0}^{t+1} c_{i} \leq \sum_{i=0}^{t+1} a_{i}+\sum_{i=0}^{t+1} b_{i}
$$

Continuing this procedure, the conclusion follows.
(3). Applying (2) n_{1} times, we obtain

$$
\begin{aligned}
S\left(n_{1} n_{2}\right) & =S\left(n_{2}+\left(n_{1}-1\right) * n_{2}\right) \leq S\left(n_{2}\right)+S\left(\left(n_{1}-1\right) n_{2}\right) \\
& \leq \cdots \leq S\left(n_{2}\right)+S\left(n_{2}\right)+\cdots+S\left(n_{2}\right)=n_{1} S\left(n_{2}\right) .
\end{aligned}
$$

By symmetry, we also have $S\left(n_{1} n_{2}\right) \leq n_{2} S\left(n_{1}\right)$.
(4).

$$
\begin{aligned}
S\left(n_{1} n_{2}\right) & =S\left(n_{1} \sum_{i=0}^{h} b_{i} * 10^{i}\right)=S\left(\sum_{i=0}^{h} n_{1} b_{i} * 10^{i}\right) \leq \sum_{i=0}^{h} S\left(n_{1} * b_{i}\right) \\
& \leq \sum_{i=0} b_{i} S\left(n_{1}\right)=S\left(n_{1}\right) S\left(n_{2}\right) .
\end{aligned}
$$

(5). Write $n=\overline{a_{k} a_{k-1} \cdots a_{0}}$. By performing the subtraction

$$
\begin{array}{cccccc}
a_{k} & a_{k-1} & \ldots & a_{1} & a_{0} & 0 \\
& a_{k} & \ldots & a_{2} & a_{1} & a_{0}
\end{array}
$$

we find that the digits of $9 n=10 n-n$ are $a_{k}, a_{k-1}-a_{k}, \ldots, a_{1}-a_{2}-1,10-a_{0}$. These digits sum to $10-1=9$.

Problem 4. (15 points) Let R be the ring of analytic functions on the complex plane, is R an integral domain? why?

Answer: It is obvious that R is a commutative ring with 1 . If $f(z) g(z)=$ 0 for some analytic functions $f(z)$ and $g(z)$ on \mathbb{C}, then $Z(f) \cup Z(g)=\mathbb{C}$, where $Z(f)$ denotes the set of zeros of $f(z), Z(g)$ has the similar meaning. In particular, one of the sets $Z(f) \cap\{z||z|=1\}$ and $Z(g) \cap\{z||z|=1\}$ must be an infinite set. We may assume $Z(f) \cap\{z||z|=1\}$ is infinite, so the zeros of $f(x)$ has a limit point in $\{z||z|=1\}$, this implies $f(z)=0$. This proves R has no zero divisor, so it is an integral domain.

Problem 5. (15 points) Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $\sum_{i=1}^{n} \frac{1}{1+x_{i}}=1$. Prove that $\sum_{i=1}^{n} \sqrt{x_{i}} \geq(n-1) \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i}}}$.

Proof. Let $a_{i}=\frac{1}{1+x_{i}}$. Using the condition $\sum_{i=1}^{n} \frac{1}{1+x_{i}}=1$, we see that

$$
\sqrt{x_{i}}=\sqrt{\frac{a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}}{a_{i}}}
$$

It is enough to prove

$$
(n-1) \sum_{i=1}^{n} \sqrt{\frac{a_{i}}{a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}}} \leq \sum_{i=1}^{n} \sqrt{\frac{a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}}{a_{i}}} .
$$

By using the Cauchy-Schwartz inequality, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} \sqrt{\frac{a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}}{a_{i}}} \\
& \geq \sum_{i=1}^{n} \frac{\sqrt{a_{1}}+\cdots+\sqrt{a_{i-1}}+\sqrt{a_{i+1}}+\cdots+\sqrt{a_{n}}}{\sqrt{n-1} \sqrt{a_{i}}} \\
& =\sum_{i=1}^{n} \frac{\sqrt{a_{i}}}{\sqrt{n-1}}\left(\frac{1}{\sqrt{a_{1}}}+\cdots+\frac{1}{\sqrt{a_{i-1}}}+\frac{1}{\sqrt{a_{i+1}}}+\cdots+\frac{1}{\sqrt{a_{n}}}\right)=B
\end{aligned}
$$

Using the inequality

$$
x_{1}+\cdots+x_{n-1} \geq(n-1)^{2} \frac{1}{x_{1}^{-1}+\cdots+x_{n-1}^{-1}}
$$

for each of the summands in (B) above and using the Cauchy-Schwartz inequality, we have

$$
B \geq \sum_{i=1}^{n}(n-1) \sqrt{\frac{a_{i}}{a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}}}
$$

Problem 6. (15 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice-differentiable function such that $f(0)=1, f^{\prime}(0)=0$, and for all $x \in[0, \infty)$,

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0
$$

Show that for all $x \in[0, \infty)$,

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}
$$

Solution: Let $g(x)=f^{\prime}(x)-2 f(x)$. Then the given inequality is equivalent to

$$
g^{\prime}(x)-3 g(x) \geq 0, \quad x \in[0, \infty)
$$

and hence,

$$
\left(g(x) e^{-3 x}\right)^{\prime} \geq 0, \quad x \in[0, \infty)
$$

Thus, $g(x) e^{-3 x}$ is an increasing function on $[0, \infty)$, which implies that

$$
g(x) e^{-3 x} \geq g(0)=-2, \quad x \in[0, \infty)
$$

or equivalently,

$$
f^{\prime}(x)-2 f(x) \geq-2 e^{3 x}, \quad x \in[0, \infty) .
$$

As above, we get

$$
\left(f(x) e^{-2 x}\right)^{\prime} \geq-2 e^{x}, \quad x \in[0, \infty)
$$

or equivalently,

$$
\left(f(x) e^{-2 x}+2 e^{x}\right)^{\prime} \geq 0, \quad x \in[-, \infty)
$$

This implies that

$$
f(x) e^{-2 x}+2 e^{x} \geq f(0)+2=3, \quad x \in[0, \infty)
$$

which means

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}, \quad x \in[0, \infty)
$$

Problem 7. (10 points) Let A be an $n \times n$ symmetric real matrix with (i, j)-entry $a_{i j}=a_{j i}, A$ defines a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(x)=x^{T} A x=$ $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$. Suppose $c=\left(c_{1}, \ldots, c_{n}\right)^{T} \in \mathbb{R}^{n}$ satisfies the conditions that (1) c is a unit vector, i.e, $c_{1}^{2}+\cdots+c_{n}^{2}=1$
(2) $f(c) \geq f(v)$ for all unit vector $v \in \mathbb{R}^{n}$. Prove that c is an eigenvector of A and the eigenvalue of c is the largest eigenvalue of A.

Proof 1. Using the Lagrangian multiplier method, set

$$
F\left(x_{1}, \ldots, x_{n}, \lambda\right)=f(x)+\lambda\left(x_{1}^{2}+\cdots+x_{n}^{2}-1\right)
$$

we see that the vector c and some λ_{0} satisfies the condition that

$$
\frac{\partial F}{\partial x_{i}}\left(c_{1}, \ldots, c_{n}, \lambda_{0}\right)=0
$$

for $i=1, \ldots, n$. Which equivalent to $A c=\lambda_{0} c$. This proves c is an eigenvector with eigenvalue λ_{0}. If λ is another eigenvalue of A, let v be a unit
eigenvector with eigenvalue λ, then suing $f(v)=v^{T} A v=\lambda \leq f(c)=\lambda_{0}$, we prove $\lambda \leq \lambda_{0}$

Sketch of Proof 2. Write A as $A=K^{T} D K$ for some orthogonal matrix K and diagonal matrix D, since the unit ball $\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$ is invariant under the transformation $x \mapsto K x$, the problem reduces to the case $A=D$, where the solution is given by a direct computation.

