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Solutions to 2023 HKUST Math Competition – Senior Level

Problem 1. (15 points) Let C∗ be the complex plane with 0 removed, let

f : C∗ → C∗ be a holomorphic map that is a bijection. Show that there is

a number a ∈ C∗ such that either f(z) = az or f(z) = az−1.

Proof If f has essential singularity By Great Picard theorem, in arbi-

trary neighborhood U of 0 the set f(U − {0}) exhausts all elements in C∗

except one value. This violates the condition f is a bijection. Therefore f

has pole or removable singularity at 0. Similarly f has pole or removable

singularity regarded as a function near∞. This implies f extends to a holo-

morphic map f : P1 → P1 of degree one, and thus must be an automorphism

of P1, which we know is of form f(z) = az+b
cz+d for some constant a, b, c, d ∈ C.

Compare to the condition of f on C, we then have f(0) = 0, f(∞) = ∞
or f(0) = ∞, f(∞) = 0. In first case one gets b = 0 = c, and then

f(z) = (a/d)z. In the second case one gets d = 0 = a, thus f(z) = (b/c)z−1.

This proves the claim.

Problem 2. (15 points) Let V be the space of complex valued continuous

functions f(x) on R satisfying the periodicity condition f(x + 1) = f(x).

For any positive integer n, we define n-th Hecke operator Tn on a continuous

function f(x) by

(Tnf)(x) =
n−1∑
j=0

f(
1

n
x+

j

n
).

(1) Prove that if f(x) ∈ V , then so is (Tnf)(x). So we have an linear

operator Tn : V → V .

(2) Prove that TmTn = Tmn.

(3) Can you find two common eigenfunctions for Tn (n = 1, 2, . . . )? hint:

consider the functions e2πimx first.
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Answer: (1)

(Tnf)(x+ 1) =

n−1∑
j=0

f(
1

n
(x+ 1) +

j

n
)

=
n−1∑
j=0

f(
1

n
x+

j + 1

n
)

=

n−1∑
j=1

f(
1

n
x+

j

n
) + f(

1

n
x+ 1)

=
n−1∑
j=1

f(
1

n
x+

j

n
) + f(

1

n
x)

=

n−1∑
j=0

f(
1

n
x+

j

n
) = (Tnf)(x)

This proves Tnf ∈ V .

(2)

(TmTnf)(x) =

m−1∑
i=0

n−1∑
j=0

f(
1

mn
x+

i

mn
+
j

n
) =

m−1∑
i=0

n−1∑
j=0

f(
1

mn
x+

i+mj

mn
)

Note that when i runs through 0 to m − 1 and j runs through 0 to n − 1,

i+mj runs through 0 to mn− 1, so (TmTnf)(x) = (Tmnf)(x).

(3) The constant function 1 is an common eigenfunction Tn1 = n = n ·1.

A less obvious common eigenfunction is fs(x) =
∑∞

n=1
e2πinx

ns , where s is a

complex number with re s > 1 (this condition is for the convergence). Then

Tnfs(x) = n1−sfs(x).

Problem 3. (15 points) Let n be a positive integer, and let S(n) denote the

sum of its decimal digits. For example, S(2357) = 2 + 3 + 5 + 7 = 17. Prove

the following:

(1) 9|S(n)− n;

(2) S(n1 + n2) ≤ S(n1) + S(n2);

(3) S(n1n2) ≤ min{n1S(n2), n2S(n1)};
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(4) S(n1n2) ≤ S(n1)S(n2).

(5) Suppose n is a positive integer such that in its decimal expansion, each

digit (except the first digit) is greater than the digit to its left. What

is S(9n), and why?

Here n, n1 and n2 denote any positive integers.

Proof

(1). Let n = akak−1 · · · a0. Then S(n) = ak + ak−1 + · · · + a0 and

n = ak ∗ 10k + ak−1 ∗ 10k−1 + · · ·+ a0. Since 10 ≡ 1 (mod 9), obviously

n ≡ ak + ak−1 + · · ·+ a0 (mod 9) ≡ S(n) (mod 9).

(2). Suppose n1 = akak−1 · · · a0, n2 = bhbh−1 · · · b0, and n1 + n2 =

cscs−1 · · · c0. Let t be least such that ai + bi < 10 for all i < t. Then

at + bt ≥ 10 and hence ct = at + bt − 10 and ct+1 ≤ at+1 + bt+1 + 1. We

obtain
t+1∑
i=0

ci ≤
t+1∑
i=0

ai +

t+1∑
i=0

bi.

Continuing this procedure, the conclusion follows.

(3). Applying (2) n1 times, we obtain

S(n1n2) = S(n2 + (n1 − 1) ∗ n2) ≤ S(n2) + S((n1 − 1)n2)

≤ · · · ≤ S(n2) + S(n2) + · · ·+ S(n2) = n1S(n2).

By symmetry, we also have S(n1n2) ≤ n2S(n1).

(4).

S(n1n2) = S(n1

h∑
i=0

bi ∗ 10i) = S(

h∑
i=0

n1bi ∗ 10i) ≤
h∑
i=0

S(n1 ∗ bi)

≤
∑
i=0

biS(n1) = S(n1)S(n2).
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(5). Write n = akak−1 · · · a0. By performing the subtraction

ak ak−1 . . . a1 a0 0

− ak . . . a2 a1 a0

we find that the digits of 9n = 10n−n are ak, ak−1−ak, . . . , a1−a2−1, 10−a0.
These digits sum to 10− 1 = 9.

Problem 4. (15 points) Let R be the ring of analytic functions on the

complex plane, is R an integral domain? why?

Answer: It is obvious thatR is a commutative ring with 1. If f(z)g(z) =

0 for some analytic functions f(z) and g(z) on C, then Z(f) ∪ Z(g) = C,

where Z(f) denotes the set of zeros of f(z), Z(g) has the similar meaning.

In particular, one of the sets Z(f) ∩ {z | |z| = 1} and Z(g) ∩ {z | |z| = 1}
must be an infinite set. We may assume Z(f) ∩ {z | |z| = 1} is infinite, so

the zeros of f(x) has a limit point in {z | |z| = 1}, this implies f(z) = 0.

This proves R has no zero divisor, so it is an integral domain.

Problem 5. (15 points) Let x1, x2, . . . , xn be positive real numbers such that∑n
i=1

1
1+xi

= 1. Prove that
∑n

i=1

√
xi ≥ (n− 1)

∑n
i=1

1√
xi

.

Proof. Let ai = 1
1+xi

. Using the condition
∑n

i=1
1

1+xi
= 1, we see that

√
xi =

√
a1 + · · ·+ ai−1 + ai+1 + · · ·+ an

ai

It is enough to prove

(n−1)
n∑
i=1

√
ai

a1 + · · ·+ ai−1 + ai+1 + · · ·+ an
≤

n∑
i=1

√
a1 + · · ·+ ai−1 + ai+1 + · · ·+ an

ai
.
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By using the Cauchy-Schwartz inequality, we have

n∑
i=1

√
a1 + · · ·+ ai−1 + ai+1 + · · ·+ an

ai

≥
n∑
i=1

√
a1 + · · ·+√ai−1 +

√
ai+1 + · · ·+√an√

n− 1
√
ai

=

n∑
i=1

√
ai√

n− 1

(
1
√
a1

+ · · ·+ 1
√
ai−1

+
1

√
ai+1

+ · · ·+ 1
√
an

)
= B

Using the inequality

x1 + · · ·+ xn−1 ≥ (n− 1)2
1

x−11 + · · ·+ x−1n−1

for each of the summands in (B) above and using the Cauchy-Schwartz

inequality, we have

B ≥
n∑
i=1

(n− 1)

√
ai

a1 + · · ·+ ai−1 + ai+1 + · · ·+ an

Problem 6. (15 points) Let f : R → R be a twice-differentiable function

such that f(0) = 1, f ′(0) = 0, and for all x ∈ [0,∞),

f ′′(x)− 5f ′(x) + 6f(x) ≥ 0.

Show that for all x ∈ [0,∞),

f(x) ≥ 3e2x − 2e3x.

Solution: Let g(x) = f ′(x)−2f(x). Then the given inequality is equiv-

alent to

g′(x)− 3g(x) ≥ 0, x ∈ [0,∞),

and hence,

(g(x)e−3x)′ ≥ 0, x ∈ [0,∞).

Thus, g(x)e−3x is an increasing function on [0,∞), which implies that

g(x)e−3x ≥ g(0) = −2, x ∈ [0,∞),
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or equivalently,

f ′(x)− 2f(x) ≥ −2e3x, x ∈ [0,∞).

As above, we get

(f(x)e−2x)′ ≥ −2ex, x ∈ [0,∞),

or equivalently,

(f(x)e−2x + 2ex)′ ≥ 0, x ∈ [−,∞).

This implies that

f(x)e−2x + 2ex ≥ f(0) + 2 = 3, x ∈ [0,∞)

which means

f(x) ≥ 3e2x − 2e3x, x ∈ [0,∞).

Problem 7. (10 points) Let A be an n × n symmetric real matrix with

(i, j)-entry aij = aji, A defines a function f : Rn → R by f(x) = xTAx =∑n
i,j=1 aijxixj . Suppose c = (c1, . . . , cn)T ∈ Rn satisfies the conditions that

(1) c is a unit vector, i.e, c21 + · · ·+ c2n = 1

(2 ) f(c) ≥ f(v) for all unit vector v ∈ Rn. Prove that c is an eigenvector of

A and the eigenvalue of c is the largest eigenvalue of A.

Proof 1. Using the Lagrangian multiplier method, set

F (x1, . . . , xn, λ) = f(x) + λ(x21 + · · ·+ x2n − 1)

we see that the vector c and some λ0 satisfies the condition that

∂F

∂xi
(c1, . . . , cn, λ0) = 0

for i = 1, . . . , n. Which equivalent to Ac = λ0c. This proves c is an eigen-

vector with eigenvalue λ0. If λ is another eigenvalue of A, let v be a unit
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eigenvector with eigenvalue λ, then suing f(v) = vTAv = λ ≤ f(c) = λ0, we

prove λ ≤ λ0

Sketch of Proof 2. Write A as A = KTDK for some orthogonal matrix

K and diagonal matrix D, since the unit ball {x ∈ Rn | |x| = 1} is invariant

under the transformation x 7→ Kx, the problem reduces to the case A = D,

where the solution is given by a direct computation.


