
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 1

1 Course details.

Coxeter systems and their associated Iwahori-Hecke algebras are central to a lot active research at the
intersection of combinatorics, geometry and representation theory. The goal of this course is to intro-
duce the basic theory of these objects, highlight some interesting applications, and discuss current open
problems.

• Books:

(a) Reflection groups and Coxeter groups by Humphreys

(b) Combinatorics of Coxeter groups by Bjorner and Brenti

(c) Characters of finite Coxeter groups and Iwahori-Hecke algebras by Geck and Pfeiffer

The lectures in the first part of the course will mostly follow (a), but (b) and (c) are also excellent
references, with slightly different focuses.

• Prerequisites:

Abstract algebra, from a course like MATH 5111.

Familiarity with representation theory and combinatorics helpful but not necessary.

• Outline:

Cover most of Chapters 1, 5, and 7 of Humphreys’s book

Complements in Chapters 2, 3, 4, and 6.

Discuss related topics, open problems, and research directions in second half, as time allows.

• Grades:

Grades will be based on problem sets which will be assigned every 1-2 weeks.

2 Motivation: Coxeter theory of the symmetric group

Today’s lecture highlights some nice properties of the symmetric group, which we will generalize in
subsequent lectures to finite reflection groups and, later, to Coxeter groups.

Let n be a positive integer and define [n] = {1, 2, 3, . . . , n}. Recall that the symmetric group is the group
Sn of bijections [n]→ [n]. Elements of Sn are called permutations.

A simple transposition is a permutation of the form (i, i + 1), i.e., that maps

i 7→ i + 1 and i + 1 7→ i and j 7→ j for j ∈ [n]− {i, i + 1}.

Write si = (i, i + 1) for i ∈ [n− 1] to denote the simple transposition interchanging i and i + 1.

The one-line representation of w ∈ Sn is the word w1w2w3 · · ·wn where wi = w(i). For example, 31254
is permutation w ∈ S5 with w(1) = 3, w(2) = 1 w(3) = 2, w(4) = 5 and w(5) = 4.

Multiplication in Sn is composition of functions: if v, w ∈ Sn, then vw : i 7→ v ◦ w(i) = v(w(i)).

Fact. If w = w1w2w3 · · ·wn ∈ Sn and i ∈ [n− 1] then wsi = w1 · · ·wi−1wi+1wiwi+2 · · ·wn.

A pair of integers (i, j) with 1 ≤ i < j ≤ n is an inversion of w ∈ Sn if w(i) > w(j). Write Inv(w) for
the set of inversions of w. Example: Inv(31254) = {(1, 2), (1, 3), (4, 5)}.

Define DesR(w) = {i : (i, i + 1) ∈ Inv(w)}. Elements of this set are (right) descents of w.

Fact. If i ∈ [n− 1] and w ∈ Sn and i /∈ DesR(w), then i ∈ DesR(wsi).
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Lemma. Let w ∈ Sn. Then DesR(w) = ∅ if and only if w = 1.

Proof. If w = 1 then clearly Inv(w) = DesR(w) = ∅. If DesR(w) = ∅, conversely, then we must have
w1 < w2 < · · · < wn. The only way this is possible is if w = 123 · · ·n = 1.

Lemma. If i ∈ DesR(w) then (j, k) 7→ (si(j), si(k)) is a bijection Inv(v)− {(i, i + 1)} → Inv(wsi).

Proof. This follows since wsi = w1 · · ·wi−1wi+1wiwi+2 · · ·wn. (Try working through the details!)

Corollary. If i ∈ DesR(w) then |Inv(wsi)| = |Inv(w)| − 1.

If X is a set contained in a group G, then we write 〈X〉 for the intersection of all subgroups H ⊂ G with
X ⊂ H. One refers to 〈X〉 as the group generated by X.

If G = 〈X〉 then G is generated by X. This occurs if and only if each g ∈ G is a product of a finite
number of elements, each of which either belongs to X or has its inverse in X.

Proposition. Sn = 〈s1, s2, . . . , sn−1〉.

Proof. Note that s2i = 1. Let w ∈ Sn − {1}. It suffices to check that w can be written as a product of
simple transpositions. We argue by induction on |Inv(w)|. Since w 6= 1, the set DesR(w) is nonempty.
Let i ∈ DesR(w). Then |Inv(wsi)| < |Inv(w)|, so by induction we assume that wsi ∈ 〈s1, s2, . . . , sn−1〉,
so clearly w = (wsi)si ∈ 〈s1, s2, . . . , sn−1〉.

Thus Sn is generated by simple transpositions, which suggests a natural question: how many simple
transpositions must we multiply together to produce a given permutation w ∈ Sn? The following corollary
shows that this must be at least the number of inversions of w.

Define the length of w ∈ Sn to be `(w) = |Inv(w)|.

Corollary. If w ∈ Sn and i ∈ [n− 1] then `(wsi) =

{
`(w)− 1 if i ∈ DesR(w)

`(w) + 1 otherwise.
.

Proof. The second case follows from the first since if i /∈ DesR(w) then i ∈ DesR(wsi).

Example. Let w0 = n · · · 321 ∈ Sn so that w0(i) = n + 1− i for i ∈ [n]. Then

Inv(w0) = {(i, j) : 1 ≤ i < j ≤ n}

so `(w0) =
(
n
2

)
. Therefore w0 is the “longest” permutation in Sn, as Inv(v) ⊂ Inv(w0) for all v ∈ Sn.

Note, the inversion set of a permutation uniquely determines it.

Proposition. If v, w ∈ Sn and Inv(v) = Inv(w) then v = w.

Proof. If Inv(v) = Inv(w) = ∅ then v = w = 1. Otherwise Inv(w) = Inv(w) 6= ∅, so DesR(v) =
DesR(w) 6= ∅. If i ∈ DesR(v) = DesR(w) then Inv(vsi) = Inv(wsi) by earlier lemma, and `(vsi) =
`(wsi) < `(v) = `(w), so by induction vsi = wsi and therefore v = (vsi)si = (wsi)si = w.

Corollary. Sn contains a unique longest element w0 of length
(
n
2

)
.

A reduced word for w ∈ Sn is a sequence of integers (i1, i2, . . . , ik) of minimal possible length k such
that w = si1si2 · · · sik . Let R(w) be the set of reduced words for w ∈ Sn. For example, R(321) =
{(1, 2, 1), (2, 1, 2)}. To understand this set, we appeal to the following crucial theorem.
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Theorem. Suppose i1, i2, . . . , im ∈ [n− 1] are such that w = si1si2 · · · sim ∈ Sn. If `(w) < m, then there
are two indices 1 ≤ j < k ≤ m such that w = si1 · · · ŝij · · · ŝik · · · sim where ̂ means we omit that factor.

We give a slightly tricky direct proof. Later we will see a more general argument.

Proof. First let k ∈ [m] be minimal such that `(si1si2 · · · sik) 6= k. Then `(si1si2 · · · sik−1
) = k − 1, so

`(si1si2 · · · sik) = k − 2. Note that k > 1, let v = si1si2 · · · sik−1
, and define b = v(ik) and a = v(ik + 1).

Observe that a < b. Now let j ∈ [m] be maximal such that a appears to the left of b in the one-
line representation of si1si2 · · · sij−1 (where if j = 1 then this product is interpreted as the identity
permutation). Since a is left of b at the outset, such an index j exists and j < k. The clever part of the
argument has two steps: (1) By the maximality of j it must hold that a and b are adjacent in positions ij
and ij+1 of the line-line representation of si1si2 · · · sij−1

. (2) It follows that si1 · · · sik−1
= si1 · · · ŝij · · · sik .

To deduce these claims, try to visualize the relative positions of a and b in the one-representations of the
successive permutations 1, si1 , si1si2 , si1si2si3 , as so on. Multiplying (2) by siksik+1

· · · sim gives

si1si2 · · · sim = si1 · · · ŝij · · · ŝik · · · sim .

The theorem has several notable corollaries.

Corollary. Every reduced word for w ∈ Sn has length `(w).

Proof. If (i1, i2, . . . , ik) ∈ R(w) then `(w) ≤ k since every time we multiply on the right by a simple
transposition the number of inversions goes up by at most one. But we cannot have `(w) < k since then
the theorem would imply that we could omit two factors from our word without changing its product,
contradicting the definition of “reduced.”

Corollary. If w ∈ Sn then `(w) = `(w−1).

This could also be shown directly. (What is the relationship between Inv(w) and Inv(w−1)?)

Proof. Reversing words is a bijection R(w)→ R(w)−1, so all words in either set have length `(w).

Corollary (Exchange principle). If w = si1si2 · · · sim and j ∈ DesR(w) then

wsj = si1 · · · ŝik · · · sim

for some k ∈ [m].

Proof. By the theorem, we can omit two factors from si1si2 · · · simsj without changing the resulting
product. If we don’t omit sj , then repeat the process until we do (then add back in the other factors).

Corollary. The map sgn : Sn → {±1} given by sgn(w) = (−1)`(w) is a homomorphism.

Proof. It suffices to check that the parities (i.e., value modulo 2) of `(vw) and `(v) + `(w) are equal for
all v, w ∈ Sn. This follows since if we concatenate reduced words for v and w, then the theorem implies
that we can obtain a reduced word for vw by omitting an even number of factors.

Most of the definitions and properties we’ve seen today have natural generalizations to all finite reflection
groups, which we will define and begin to classify next time.
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