1 Course updates

The website is up at http://www.math.ust.hk/~emarberg/Math6150F and the first homework assignment have been posted. The first assignment is due in class next Monday, 13 February.

2 Reflection groups

Let V be a vector space over the real numbers \mathbb{R}, with a bilinear form $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ that is both symmetric and positive definite. Recall that these properties are equivalent to requiring that $(u, v)=(v, u)$ for all $u, v \in V$ and $(v, v)>0$ if $v \in V$ is nonzero.
Two vectors $u, v \in V$ are orthogonal if $(u, v)=0$.
The important thing about this setup is the following basic fact from linear algebra: if $U \subset V$ is any subspace and $U^{\perp}=\{v \in V:(u, v)=0$ for all $u \in U\}$ then U^{\perp} is also a subspace and $V=U \oplus V^{\perp}$. If U is a one-dimensional space (i.e., a line), then U^{\perp} is the hyperplane orthogonal to U.

Example. If $V=\mathbb{R}^{n}$ then the standard choice for (\cdot, \cdot) is given by setting $\left(\sum_{i} a_{i} e_{i}, \sum_{i} b_{i} e_{i}\right)=\sum_{i} a_{i} b_{i}$.
Definition. The reflection through a nonzero vector $\alpha \in V$ is the linear map

$$
s_{\alpha}: v \mapsto v-2 \frac{(v, \alpha)}{(\alpha, \alpha)} \alpha \quad \text { for } v \in V
$$

Note that we don't have to worry about dividing by (α, α) since the form is positive definite.
Fix a nonzero vector $\alpha \in V$. To get some geometric intuition for what s_{α} does, consider the following simple facts. Each of these statements follows immediately from the definition of s_{α}.

Lemma. $s_{\alpha}=s_{c \alpha}$ for any nonzero scalar $c \in \mathbb{R}$.
Lemma. $s_{\alpha}(\alpha)=-\alpha$.
Lemma. If $v \in V$ and $(v, \alpha)=0$ then $s_{\alpha}(v)=v$.
Thus s_{α} negates α and fixes every vector orthogonal to α. In other words, s_{α} acts on V by reflecting vectors across the hyperplane orthogonal to α.

Lemma. $s_{\alpha}^{2}=1$.
Proof. This is clear from the geometric description of s_{α} just given. Algebraically, we have $s_{\alpha}^{2}(v)=$ $s_{\alpha}\left(s_{\alpha} v\right)=s_{\alpha}\left(v-2 \frac{(v, \alpha)}{(\alpha, \alpha)} \alpha\right)=v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha+\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha=v$ for all $v \in V$, so $s_{\alpha}^{2}=1$.

Proposition. If $v, w \in V$ then $\left(s_{\alpha} v, s_{\alpha} w\right)=(v, w)$.
Proof. This statement generalizes the fact from planar geometry that reflection across a line preserves angles. Algebraically, the result follows by using bilinearity to expand

$$
\begin{aligned}
\left(s_{\alpha} v, s_{\alpha} w\right) & =\left(v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha, w-\frac{2(w, \alpha)}{(\alpha, \alpha)} \alpha\right) \\
& =(v, w)-\frac{2(v, \alpha)(w, \alpha)}{(\alpha, \alpha)}-\frac{2(v, \alpha)(w, \alpha)}{(\alpha, \alpha)}+\frac{4(v, \alpha)(w, \alpha)(\alpha, \alpha)}{(\alpha, \alpha)^{2}}=(v, w)
\end{aligned}
$$

We write $\mathrm{GL}(V)$ for the general linear group of V, consisting of all invertible linear maps $V \rightarrow V$. The orthogonal group of V with respect to the form (\cdot, \cdot) is the group $O(V)$ consisting of all maps $g \in \mathrm{GL}(V)$ that preserve our bilinear form, i.e., with $(g v, g w)=(v, w)$ for $v, w \in V$. These sets are groups with respect to composition of linear maps.
The preceding proposition amounts to saying that each reflection s_{α} belongs to $O(V)$.
Definition. A (finite) reflection group is a (finite) subgroup of $O(V)$ generated by $\left\{s_{\alpha}: \alpha \in X\right\}$ for some finite set of nonzero vectors $X \subset V \backslash\{0\}$.

The goal of the next few lectures will be to classify the finite reflections groups, that is, to describe which finite groups arise as reflection subgroups of $O(V)$ for some choice of V and the accompanying bilinear form. It turns out, surprisingly, that such a classification is possible and nontrivial. This will afford concrete realizations of many Coxeter groups, and motivate the study of Coxeter systems in general.

Example (Dihedral groups). Let $V=\mathbb{R}^{2}$ with the standard bilinear form. Fix a regular m-gon centered at the origin. Let D_{m} be the set of the following linear transformations:
(i) rotation counter-clockwise by angle $\frac{2 \pi j}{m}$ for $j=0,1,2, \ldots, m-1$,
(ii) reflection across one of the $2 m$ "diagonals" of our m-gon (that is, across a line through the origin that either connects two opposite vertices, two midpoints of opposite sides, or a vertex to the midpoint of the opposite side).

There are m distinct transformations of each of these types, so $\left|D_{m}\right|=2 m$. One can check that D_{m} is a group with respect to composition: this is the group of all rigid motions of \mathbb{R}^{2} that preserve our regular polygon. Moreover, D_{m} is a reflection group since rotation by angle $\frac{2 \pi}{m}$ is a product of two diagonal reflection. (Try to visualize this for $m=5$ and $m=6$.) Call D_{m} the dihedral group of size $2 m$ or the Coxeter group of type $I_{2}(m)$.

Example (Symmetric groups). Recall that S_{n} is the symmetric group of permutations of $[n]=\{1,2, \ldots, n\}$. View S_{n} as a subgroup of $O(n, \mathbb{R})$, the orthogonal group of $V=\mathbb{R}^{n}$ with the standard form, by having $w \in S_{n}$ act on the standard basis $e_{1}, e_{2}, \ldots, e_{n} \in \mathbb{R}^{n}$ via $w\left(e_{i}\right)=e_{w(i)}$, and extending linearly. (Check yourself that this action preserves the standard form (\cdot, \cdot).)

Now $w \in S_{n}$ corresponds to the matrix $\left(a_{i j}\right)_{i, j \in[n]}$ with $a_{i j}=1$ if $j=w(i)$ and 0 otherwise.
Recall that $S_{n}=\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$ where $s_{i}=(i, i+1)$ transposes i and $i+1$.

Fact. With respect to our inclusion $S_{n} \hookrightarrow O(n, \mathbb{R})$, we have $s_{i}=s_{\alpha}$ for $\alpha=e_{i}-e_{i+1}$.
Proof. If $i \in[n-1]$ and $j \in[n]$ then

$$
s_{e_{i}-e_{i+1}}\left(e_{j}\right)=e_{j}-\frac{2\left(e_{i}-e_{i+1}, e_{j}\right)}{\left(e_{i}-e_{i+1}, e_{i}-e_{i+1}\right)}\left(e_{i}-e_{i+1}\right)=e_{j}-\delta_{i, j}\left(e_{i}-e_{i+1}\right)+\delta_{i+1, j}\left(e_{i}-e_{i+1}\right) .
$$

The last expression simplifies to e_{i} if $j=i+1$, to $e_{i=1}$ if $j=i$, and to e_{j} otherwise, which is $e_{s_{i}(j)}$.
Thus S_{n} is (isomorphic) to a finite reflection group: this group is the Coxeter group of type A_{n-1}.

3 Root systems

To classify reflection groups, we develop some general theory about the action of such a group on the ambient vector space. Continue to let V be a real vector space with a symmetric, positive definite, bilinear form (\cdot, \cdot). Let $W \subset O(V)$ be a finite reflection group.

Proposition. If $w \in O(V)$ and $0 \neq \alpha \in V$ then $w s_{\alpha} w^{-1}=s_{w \alpha}$. Hence if $w, s_{\alpha} \in W$ then $s_{w \alpha} \in W$.

Proof. We have $w s_{\alpha} w^{-1}(w \alpha)=w s_{\alpha}(\alpha)=w(-\alpha)=-w \alpha=s_{w \alpha}(w \alpha)$. To show that $w s_{\alpha} w^{-1}=s_{w \alpha}$, it suffices to check that $w s_{\alpha} w^{-1}(\beta)=\beta=s_{w \alpha}(\beta)$ for all $\beta \in V$ with $(w \alpha, \beta)=0$. But if $(w \alpha, \beta)=0$ then

$$
0=(w \alpha, \beta)=\left(w^{-1} w \alpha, w^{-1} \beta\right)=\left(\alpha, w^{-1} \beta\right)
$$

so $s_{\alpha}\left(w^{-1} \beta\right)=w^{-1} \beta$ and therefore $w s_{\alpha} w^{-1}(\beta)=\beta$.
When s is a reflection in $O(V)$, let L_{s} be the line spanned by any nonzero vector $\alpha \in V$ with $s=s_{\alpha}$. Note that L_{s} determines s, and that we get the same line for any choice of α.

The proposition shows that W permutes the set of lines $\left\{L_{s}: s\right.$ is a reflection in $\left.W\right\}$. To study the structure of W, we should consider this action closely. But rather than work with lines, let's instead replace each line by a pair of opposite vectors and examine W 's action on the resulting set of vectors.

This sequences of ideas motivates the following definition of the root system of a reflection group.
Definition. Let Φ be a finite set of nonzero vectors in V such that
(R1) $\Phi \cap \mathbb{R} \alpha=\{\alpha,-\alpha\}$ for each $\alpha \in \Phi$.
(R2) $s_{\alpha}(\beta) \in \Phi$ for all $\alpha, \beta \in \Phi$.
Call Φ a root system, and refer to its elements as roots.
If $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$, then we say that W is the reflection group associated to Φ.
We have the following correspondence between finite reflection groups and root systems.
Proposition. If $W \subset O(V)$ is a finite reflection group then W is the reflection group associated to some root system Φ (though this many not be unique).

Proof. Construct Φ by including the pair of unit vectors on the line L_{s} for each reflection $s \in W$. This set is finite since W is finite; Φ obviously satisfies (R1); and (R2) holds by the previous proposition.

Proposition. If Φ is a root system and W is its associated reflection group, then W is finite.
Proof. Let $U=\mathbb{R}$-span $\{\alpha \in \Phi\}$ and $U^{\perp}=\{v \in V:(u, v)=0$ for all $u \in U\}$. Then for each $\alpha \in \Phi$ we have $s_{\alpha} u=u$ for all $u \in U^{\perp}$, so $w u=u$ for all $u \in U^{\perp}$. We deduce that if $w \alpha=\alpha$ for all $\alpha \in \Phi$ then w fixes all elements of $V=U \oplus U^{\perp}$, so $w=1$. Thus the homomorphism $W \rightarrow S_{n}$ for $n=|\Phi|$ induced by the action of W on Φ has trivial kernel so is injective, and so $|W| \leq\left|S_{n}\right|=n!<\infty$.

Moral: from any finite reflection group we can construct a root system, and the reflections indexed by a root system generate a finite reflection group. So we should develop some theory about root systems.

Definition. A total order on V is a transitive relation $<$ such that
(1) $\lambda<\mu$ or $\lambda=\mu$ or $\mu<\lambda$ for each $\lambda, \mu \in V$.
(2) If $\mu<\nu$ then $\lambda+\mu<\lambda+\nu$ for each $\lambda, \mu, \nu \in V$.
(3) If $\lambda<\mu$ then $c \lambda<c \mu$ and $-c \mu<-c \lambda$ for $\lambda, \mu \in V$ and any real number $c>0$.

This list of conditions looks a little technical, but really just axiomatizes the most natural properties of the usual total order on real numbers.

With respect to a total order $<$ on V, a vector $v \in V$ is positive if $0<v$. Positive vectors are preserved under sums and under products by positive scalars. An important thing to note:

Proposition. A total order $<$ exists on V.

Proof. Let $e_{1}, e_{2}, \ldots, e_{n}$ be an arbitrary basis of V. Set $\lambda<\mu$ if we have $\lambda=a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n}$ and $\mu=b_{1} e_{1}+b_{2} e_{2}+\ldots b_{n} e_{n}$, where each $a_{i}, b_{i} \in \mathbb{R}$, and it holds that $a_{j}<b_{j}$ for some $j \in[n]$ while $a_{i}=b_{i}$ for $1 \leq i<j$. Check that this relation is transitive and satisfies the axioms of a total order.

We refer to the total order constructed in the preceding proof and the lexicographic order induced by the ordered basis $e_{1}, e_{2}, \ldots, e_{n}$.
There are several important constructions attached to a root system which depend on a choice of total order on V. The relevant definitions can seem a little unnatural, since at our current level of abstraction there is no obviously "best" total order to adopt. We will see, however, that all useful definitions depending on a choice of total order are actually independent of our choice.

Definition. Let Φ be a root system. A subset $\Pi \subset \Phi$ is a positive system if every $\alpha \in \Phi$ is positive (i.e., $0<\alpha$) with respect to some total order $<$ on V.

Proposition. If $\Pi \subset \Phi$ is a positive system then $\Phi=\Pi \sqcup-\Pi$ where \sqcup denotes disjoint union.
Proof. This follows since roots in Φ come in pairs $\{-\alpha, \alpha\}$.

Definition. A subset $\Delta \subset \Phi$ is a simple system if Δ is a linearly independent set of vectors and each $\alpha \in \Phi$ can be expressed as $\alpha=\sum_{\beta \in \Delta} c_{\beta} \beta$ for coefficients $c_{\beta} \in \mathbb{R}$ which are either all ≥ 0 or all ≤ 0. Elements of a simple system are called simple roots.

It is not obvious that every root system contains a simple system. (Why is it obvious that every root system contains a positive system?) Nevertheless, the following is true:

Theorem. Let Φ be a root system.
(a) If Δ is a simple system in Φ, then there is a unique positive system $\Pi \subset \Phi$ containing Δ.
(b) Every positive system $\Pi \subset \Phi$ contains a unique simple system. Thus, simple systems always exist.

Proof. Today, we prove the first part and start the second.
(a) The unique positive system Π containing a given simple system Δ is the one defined with respect to the lexicographic total order induced by any ordering of Δ. This positive system is uniquely characterized as the intersection $\Phi \cap \mathbb{R}^{+}-\operatorname{span}\{\alpha \in \Delta\}$ where $\mathbb{R}^{+}=\{x \in \mathbb{R}: x \geq 0\}$.
(b) Suppose Δ is a simple system contained in a positive system Π. Then Δ is the unique simple system in Π since Δ is the subset of roots $\lambda \in \Pi$ such that $\lambda \neq \alpha+\beta$ for all $\alpha, \beta \in \Pi$.
It remains to construct a simple system $\Delta \subset \Pi$. The idea is to let Δ be the minimal subset of Π such that each $\alpha \in \Pi$ is a nonnegative linear combination of elements of Δ. This set will be a simple system if we can show that it is linearly independent - which we will do next time!

