
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 2

1 Course updates

The website is up at http://www.math.ust.hk/~emarberg/Math6150F and the first homework assign-
ment have been posted. The first assignment is due in class next Monday, 13 February.

2 Reflection groups

Let V be a vector space over the real numbers R, with a bilinear form (·, ·) : V × V → R that is both
symmetric and positive definite. Recall that these properties are equivalent to requiring that (u, v) = (v, u)
for all u, v ∈ V and (v, v) > 0 if v ∈ V is nonzero.

Two vectors u, v ∈ V are orthogonal if (u, v) = 0.

The important thing about this setup is the following basic fact from linear algebra: if U ⊂ V is any
subspace and U⊥ = {v ∈ V : (u, v) = 0 for all u ∈ U} then U⊥ is also a subspace and V = U ⊕ V ⊥. If
U is a one-dimensional space (i.e., a line), then U⊥ is the hyperplane orthogonal to U .

Example. If V = Rn then the standard choice for (·, ·) is given by setting (
∑
i aiei,

∑
i biei) =

∑
i aibi.

Definition. The reflection through a nonzero vector α ∈ V is the linear map

sα : v 7→ v − 2 (v,α)
(α,α)α for v ∈ V.

Note that we don’t have to worry about dividing by (α, α) since the form is positive definite.

Fix a nonzero vector α ∈ V . To get some geometric intuition for what sα does, consider the following
simple facts. Each of these statements follows immediately from the definition of sα.

Lemma. sα = scα for any nonzero scalar c ∈ R.

Lemma. sα(α) = −α.

Lemma. If v ∈ V and (v, α) = 0 then sα(v) = v.

Thus sα negates α and fixes every vector orthogonal to α. In other words, sα acts on V by reflecting
vectors across the hyperplane orthogonal to α.

Lemma. s2
α = 1.

Proof. This is clear from the geometric description of sα just given. Algebraically, we have s2
α(v) =

sα(sαv) = sα

(
v − 2 (v,α)

(α,α)α
)

= v − 2(v,α)
(α,α) α+ 2(v,α)

(α,α) α = v for all v ∈ V , so s2
α = 1.

Proposition. If v, w ∈ V then (sαv, sαw) = (v, w).

Proof. This statement generalizes the fact from planar geometry that reflection across a line preserves
angles. Algebraically, the result follows by using bilinearity to expand

(sαv, sαw) =
(
v − 2(v,α)

(α,α) α,w −
2(w,α)
(α,α) α

)
= (v, w)− 2(v,α)(w,α)

(α,α) − 2(v,α)(w,α)
(α,α) + 4(v,α)(w,α)(α,α)

(α,α)2 = (v, w).
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We write GL(V ) for the general linear group of V , consisting of all invertible linear maps V → V . The
orthogonal group of V with respect to the form (·, ·) is the group O(V ) consisting of all maps g ∈ GL(V )
that preserve our bilinear form, i.e., with (gv, gw) = (v, w) for v, w ∈ V . These sets are groups with
respect to composition of linear maps.

The preceding proposition amounts to saying that each reflection sα belongs to O(V ).

Definition. A (finite) reflection group is a (finite) subgroup of O(V ) generated by {sα : α ∈ X} for
some finite set of nonzero vectors X ⊂ V \ {0}.

The goal of the next few lectures will be to classify the finite reflections groups, that is, to describe which
finite groups arise as reflection subgroups of O(V ) for some choice of V and the accompanying bilinear
form. It turns out, surprisingly, that such a classification is possible and nontrivial. This will afford
concrete realizations of many Coxeter groups, and motivate the study of Coxeter systems in general.

Example (Dihedral groups). Let V = R2 with the standard bilinear form. Fix a regular m-gon centered
at the origin. Let Dm be the set of the following linear transformations:

(i) rotation counter-clockwise by angle 2πj
m for j = 0, 1, 2, . . . ,m− 1,

(ii) reflection across one of the 2m “diagonals” of our m-gon (that is, across a line through the origin
that either connects two opposite vertices, two midpoints of opposite sides, or a vertex to the
midpoint of the opposite side).

There are m distinct transformations of each of these types, so |Dm| = 2m. One can check that Dm is a
group with respect to composition: this is the group of all rigid motions of R2 that preserve our regular
polygon. Moreover, Dm is a reflection group since rotation by angle 2π

m is a product of two diagonal
reflection. (Try to visualize this for m = 5 and m = 6.) Call Dm the dihedral group of size 2m or the
Coxeter group of type I2(m).

Example (Symmetric groups). Recall that Sn is the symmetric group of permutations of [n] = {1, 2, . . . , n}.
View Sn as a subgroup of O(n,R), the orthogonal group of V = Rn with the standard form, by having
w ∈ Sn act on the standard basis e1, e2, . . . , en ∈ Rn via w(ei) = ew(i), and extending linearly. (Check
yourself that this action preserves the standard form (·, ·).)

Now w ∈ Sn corresponds to the matrix (aij)i,j∈[n] with aij = 1 if j = w(i) and 0 otherwise.

Recall that Sn = 〈s1, s2, . . . , sn−1〉 where si = (i, i+ 1) transposes i and i+ 1.

Fact. With respect to our inclusion Sn ↪→ O(n,R), we have si = sα for α = ei − ei+1.

Proof. If i ∈ [n− 1] and j ∈ [n] then

sei−ei+1
(ej) = ej − 2(ei−ei+1,ej)

(ei−ei+1,ei−ei+1) (ei − ei+1) = ej − δi,j(ei − ei+1) + δi+1,j(ei − ei+1).

The last expression simplifies to ei if j = i+ 1, to ei=1 if j = i, and to ej otherwise, which is esi(j).

Thus Sn is (isomorphic) to a finite reflection group: this group is the Coxeter group of type An−1.

3 Root systems

To classify reflection groups, we develop some general theory about the action of such a group on the
ambient vector space. Continue to let V be a real vector space with a symmetric, positive definite,
bilinear form (·, ·). Let W ⊂ O(V ) be a finite reflection group.

Proposition. If w ∈ O(V ) and 0 6= α ∈ V then wsαw
−1 = swα. Hence if w, sα ∈W then swα ∈W .
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Proof. We have wsαw
−1(wα) = wsα(α) = w(−α) = −wα = swα(wα). To show that wsαw

−1 = swα, it
suffices to check that wsαw

−1(β) = β = swα(β) for all β ∈ V with (wα, β) = 0. But if (wα, β) = 0 then

0 = (wα, β) = (w−1wα,w−1β) = (α,w−1β),

so sα(w−1β) = w−1β and therefore wsαw
−1(β) = β.

When s is a reflection in O(V ), let Ls be the line spanned by any nonzero vector α ∈ V with s = sα.
Note that Ls determines s, and that we get the same line for any choice of α.

The proposition shows that W permutes the set of lines {Ls : s is a reflection in W}. To study the
structure of W , we should consider this action closely. But rather than work with lines, let’s instead
replace each line by a pair of opposite vectors and examine W ’s action on the resulting set of vectors.

This sequences of ideas motivates the following definition of the root system of a reflection group.

Definition. Let Φ be a finite set of nonzero vectors in V such that

(R1) Φ ∩ Rα = {α,−α} for each α ∈ Φ.

(R2) sα(β) ∈ Φ for all α, β ∈ Φ.

Call Φ a root system, and refer to its elements as roots.

If W = 〈sα : α ∈ Φ〉, then we say that W is the reflection group associated to Φ.

We have the following correspondence between finite reflection groups and root systems.

Proposition. If W ⊂ O(V ) is a finite reflection group then W is the reflection group associated to some
root system Φ (though this many not be unique).

Proof. Construct Φ by including the pair of unit vectors on the line Ls for each reflection s ∈ W . This
set is finite since W is finite; Φ obviously satisfies (R1); and (R2) holds by the previous proposition.

Proposition. If Φ is a root system and W is its associated reflection group, then W is finite.

Proof. Let U = R-span{α ∈ Φ} and U⊥ = {v ∈ V : (u, v) = 0 for all u ∈ U}. Then for each α ∈ Φ we
have sαu = u for all u ∈ U⊥, so wu = u for all u ∈ U⊥. We deduce that if wα = α for all α ∈ Φ then w
fixes all elements of V = U ⊕ U⊥, so w = 1. Thus the homomorphism W → Sn for n = |Φ| induced by
the action of W on Φ has trivial kernel so is injective, and so |W | ≤ |Sn| = n! <∞.

Moral: from any finite reflection group we can construct a root system, and the reflections indexed by a
root system generate a finite reflection group. So we should develop some theory about root systems.

Definition. A total order on V is a transitive relation < such that

(1) λ < µ or λ = µ or µ < λ for each λ, µ ∈ V .

(2) If µ < ν then λ+ µ < λ+ ν for each λ, µ, ν ∈ V .

(3) If λ < µ then cλ < cµ and −cµ < −cλ for λ, µ ∈ V and any real number c > 0.

This list of conditions looks a little technical, but really just axiomatizes the most natural properties of
the usual total order on real numbers.

With respect to a total order < on V , a vector v ∈ V is positive if 0 < v. Positive vectors are preserved
under sums and under products by positive scalars. An important thing to note:

Proposition. A total order < exists on V .
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Proof. Let e1, e2, . . . , en be an arbitrary basis of V . Set λ < µ if we have λ = a1e1 + a2e2 + · · · + anen
and µ = b1e1 + b2e2 + . . . bnen, where each ai, bi ∈ R, and it holds that aj < bj for some j ∈ [n] while
ai = bi for 1 ≤ i < j. Check that this relation is transitive and satisfies the axioms of a total order.

We refer to the total order constructed in the preceding proof and the lexicographic order induced by the
ordered basis e1, e2, . . . , en.

There are several important constructions attached to a root system which depend on a choice of total
order on V . The relevant definitions can seem a little unnatural, since at our current level of abstraction
there is no obviously “best” total order to adopt. We will see, however, that all useful definitions
depending on a choice of total order are actually independent of our choice.

Definition. Let Φ be a root system. A subset Π ⊂ Φ is a positive system if every α ∈ Φ is positive (i.e.,
0 < α) with respect to some total order < on V .

Proposition. If Π ⊂ Φ is a positive system then Φ = Π t −Π where t denotes disjoint union.

Proof. This follows since roots in Φ come in pairs {−α, α}.

Definition. A subset ∆ ⊂ Φ is a simple system if ∆ is a linearly independent set of vectors and each
α ∈ Φ can be expressed as α =

∑
β∈∆ cββ for coefficients cβ ∈ R which are either all ≥ 0 or all ≤ 0.

Elements of a simple system are called simple roots.

It is not obvious that every root system contains a simple system. (Why is it obvious that every root
system contains a positive system?) Nevertheless, the following is true:

Theorem. Let Φ be a root system.

(a) If ∆ is a simple system in Φ, then there is a unique positive system Π ⊂ Φ containing ∆.

(b) Every positive system Π ⊂ Φ contains a unique simple system. Thus, simple systems always exist.

Proof. Today, we prove the first part and start the second.

(a) The unique positive system Π containing a given simple system ∆ is the one defined with respect
to the lexicographic total order induced by any ordering of ∆. This positive system is uniquely
characterized as the intersection Φ ∩ R+-span{α ∈ ∆} where R+ = {x ∈ R : x ≥ 0}.

(b) Suppose ∆ is a simple system contained in a positive system Π. Then ∆ is the unique simple system
in Π since ∆ is the subset of roots λ ∈ Π such that λ 6= α+ β for all α, β ∈ Π.

It remains to construct a simple system ∆ ⊂ Π. The idea is to let ∆ be the minimal subset of
Π such that each α ∈ Π is a nonnegative linear combination of elements of ∆. This set will be a
simple system if we can show that it is linearly independent—which we will do next time!
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