MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 3

1 Last time: reflection groups and root systems

Recall our usual setup: let V be a vector space over the real numbers R, with a symmetric, positive
definite, bilinear form (-,-) : V. x V — R.

The reflection with respect to a nonzero vector o € V' the linear map

2(v,a
Sq t V>V — 7(;7(1)) .

The terminology comes from the fact that the vector s,v is given by “reflecting” v across the hyperplane
orthogonal to a.
A reflection group is a subgroup of the general linear group GL(V') generated by a finite set of reflections.

Our goal is to classify the finite groups which are reflection groups. Examples of such groups include the
dihedral groups, symmetric groups, etc.

Let W be a finite reflection group.

We saw last time that if s, € W for some nonzero o € V then s,q = wsqw ™! € W for all w € W. Thus
W acts on the set of lines spanned by vectors a with s, € W. This set is finite since W is finite. The
notion of a root system gives an abstract model of this action.

A root system is a finite set ® of nonzero vectors in V' such that

(R1) ® NRa = {a, —a} for each a € ®.

(R2) s4(B) € @ for all o, B € .

Elements of @ are called roots. The group W = (s, : a € ®) is the reflection group associated to ®.

We saw last time that any finite reflection group arises as the group associated to some root system, and
that conversely the reflection group associated to any root system is finite.

A total order on V is a transitive relation < on V such that

(1) Exactly one of a < b or a =0 or b < a holds for each a,b € V.

(2) fa<bthena+c<b+cforall abceV.

(3) If z < y and ¢ € R is positive then cz < cy and —cy < —cz.
This list of conditions looks long, but just encodes our usual intuitions about total orderings of numbers.
The easiest way to construct a total order on V' is to choose a basis vy, va, ..., v, and set ). a;v; < >, bjv;

if for some j € [n] it holds that a1 = b1, as =bs, ..., aj_1 = bj_1, and a; < b;.

Fact. Let < be a total order on V. If ay, as, ..., an,b1,ba,...,b, €V are such that a; < b; for all i € [n],
then >, a; < 3, b;.

Proof. This follows by induction: if Z?:_ll a; < Z?:_ll b; then >0 | a; < an—&-Z?:_ll b; < bn—&—Z?Z_II b;. O

A positive system II in a root system ® is a set of the form {a € @ : 0 < a} where < is some total order
on V. Once we have chosen a total order, there is only one corresponding positive system in ®, but if we
haven’t specified < then there are many choices for II. For example, —II is also a positive system (since
“>” is also a total order). The set ® is the disjoint union of IT and —TII.

A simple system A in a root system ® is a subset of linearly independent roots with the property that
every « € ® can be written (uniquely) as o = ZBEA cgf where either 0 < mingea cg (all coefficients
positive) or maxgea cg < 0 (all coefficients negative).

Positive systems obviously exist (why?), but it is not immediate from the definition that every root system
has a simple system. So the following result is nontrivial:
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Theorem. Every simple system in a root system is contained in a unique positive system. Every positive
system in a root system contains a unique simple system.

Proof. We proved the first statement last time. To prove the second, suppose II is a positive system
in a root system ®. Let A be the minimal subset of II such that each a € II is a nonnegative linear
combination of elements of A. To show that A is a simple system, it is enough to check that the set is
linearly independent. For this, we need the following lemma:

Lemma. Let a, 8 € A with o # 8. Then («,8) <0.

Proof. Suppose («, 8) > 0. We argue by contradiction. Note that

saff = — ca (*)

for ¢ = % > 0. Suppose first that s, € II. We then have

saf=3 ey (%)

YEA

for some nonnegative coefficients c.,, by definition. If the coefficient ¢g < 0 then comparing (*) and (**)
shows that (1 — c¢g)f is a nonnegative linear combination of the elements of A\ {5}, so the same is true
of 3 since 1 — cg > 0; but this means we cannot have 8 € A, contradicting our assumption otherwise. If
c¢g = 1 then a similar comparison shows that 0 = (cg —1)8+ca+ 3, ca\ (5 ¢v7- This is a contradiction

since the fact proved above implies 0 < (cg — 1)B + ca + 3 ca\ 53 17
A similar argument leads to a contradiction if we assume instead that s, 8 € —II. Since s, must belong

to IT or —II since the union of these two is @, we relent and deduce that (a, ) < 0. O

The proof of the theorem from the lemma goes as follows: if A were not linearly independent then we
could write Y bgf = > ¢,y # 0 where the sums are over disjoint subsets of A and the coefficients bg
and ¢, are > 0. Let o denote the common value of these linear combinations. We would then have
0<(0,0)= ZB, bgcy(B,7) < 0, the first < by positive definiteness and the second by the lemma. This
implies that (o,0) = 0 so ¢ = 0, which is a contradiction.

Conclude that A is a simple system. (Why is it unique?) O
Let us restate the lemma in the theorem as a corollary:

Corollary. If A is a simple system in ® then (a, 8) < 0 for all distinct o, 8 € A.
We sometimes refer to the size of any simple system A C ® as the rank of the group W = (s, : a € D).

2 Examples of root systems

What we have shown so far: given a root system ®, we can always choose a total order <, which
determines a positive system II, which determines a simple system A. There is a lot to unpack in this
statement, so we digress briefly with some simple examples of root systems.

If V = R? with the standard bilinear form (v,w) = viwy + vows, then the following sets of 4, 6, and 8
vectors in V' are root systems (namely, of types A1 x Aj, As, and Bs):
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AxAy Ay By

=

w2
2w3

The vectors labeled o and S in each picture make up simple system. (Why can there only be two simple
roots if V = R?? What is the corresponding positive system and total order on V'?)

We should also mention an example that lives in higher dimensions. Let V be the subset of vectors
v € R™ whose coefficients in the standard basis sum to zero, i.e., with Y, v; = 0. This is a subspace of
dimension n — 1. Take (-,-) to be the usual bilinear form on R™ restricted to V.

Define < as the total order on R™ induced by lexicographic order on the standard basis ey, ea,. .., e,.

Define ® = {e; —e; : 1 <4,j <nand i # j}. For example, if n = 3 then
® = {e; —ea,e1 —e3,60 — 3,62 —€1,€3 — €1,€3 — €2}

Exercise:
(1) @ is a root system.
(2) T={e; —e; : 1 <i<j<n}isa positive system in P.
(3) A={e; —e;q1:1€ [n—1]} is a simple system in II.
Note at least that if ¢ # j then (e; — e;11,e; — €j41) is either 0 or —1, as our earlier lemma predicted.
A natural thing to inquire: what is the associated reflection group W = (s, : o € ®)?
Observe that

2 e
Ses—e; (V) = v — %(eZ —ej)=v— (v; —vj)(e; —€j) = (V1. .o, Vjyeny Viyenny Un).

Thus s, ¢; acts on V' by transposing the ith and jth coordinates of vectors. It follows that there exists
an isomorphism S,, — W mapping the transposition (i, j) to s¢, ;.

(What are the reflection groups associated to the example root systems in R??)

3 Relating different simple systems

Let V be a real vector space with the usual symmetric, positive definite, bilinear form (-, -).

Let ® C V be a root system, IT C & a positive system, and A C II a simple system. There are a lot
of implicit choices made here. How important are these choices? As our last results today we will show
that the answer to this question is: not very.

Let W = (sq : @ € D).

Proposition. If & € A then s,(IT'\ {a}) =11\ {a}.
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Proof. Let 8 € II\{a}. Write 8 = 3__ . ¢y, where each coefficient ¢, € Ris > 0. Since ®NRa = {£a},
there exists v # o in A with ¢y > 0. Hence

$af =8 —ca= Z ey + (ca — )

yeA\{a}

2(a,8)
(o,0)
positive. For the same reason, this positive root cannot be «. Therefore s, € II \ {a}, so s, maps

IT\ {a} = II'\ {«}. Since s, is invertible, this map is a bijection. O

for ¢ =

The last expression is a root, so it must be a positive root, since the coefficient c, is

Remember that s,a = —a.

Corollary. Let o« € A. Then {8 € II: 5,8 € —II} = {a}.

The group W not only preserves ®, but permutes the set of simple/positive systems in ®:

Theorem. Any two positive (respectively, simple) systems in ® are conjugate under W, in the sense
that if I, II' are positive systems and A, A’ are the unique simple systems they contain, then there exists
w € W with wIl = II’ and wA = A'.

Proof. Tt suffices to show this for positive systems. (Why?) Let IT and IT' be two positive systems in ®
Note that |II| = |II'| = |®|/2. We argue by induction on the number r = [IIN—II'|. If » = 0 then IT = IT',
so take w = 1. Assume r > 0, so that IT ¢ II'. Let A be the unique simple system in II. Then certainly
also A ¢ II'. Choose a € A with « € —II'. Then |s,IIN—II'| = r — 1 by the proposition. But s,II is also
a positive system (why?) so by induction there exists w € W with w(s,II) =1, i.e., (wsy)II=1I". O

Our final theorem today is an analogue of a result we saw in the first lecture for the symmetric group.

Define a simple reflection to be a reflection s, where o € A is a simple root. Define the height of § € ®
relative to A as ht(8) = Y oA ca Where B =3 A cac.

Theorem. Let W = (so : o € ®). Then W = (s, : v € A).

Proof. Let W/ = (s, : @ € A). Clearly W C W. We want to show that W C W’. We will deduce this
from two claims.

Claim. If 8 € II and + is an element of minimal height in W/ NI then v € A.

Proof of claim. Write y = - ca. Note that every ¢, > 0but 0 < (v,7) = >_, ca(v, @), 50 (v,a) >0
2(v,)

for some o € A. If v # « then s, is positive by the previous proposition, but ht(s,v) = ht(y) — 725 <

(e, @)

ht() and s,y € W’ since s, € W', contradicting the minimality of the height of v. Soy=a € A. O

Claim. W/A = ®.

Proof of claim. TI C W'A since the W'-orbit of each 8 € II intersects A by the first claim. If 8 € —II
then —f3 = wa for some w € W’ and a € A, so 8 = ws,a € WA, since ws, € W and sp,a = —a. [

To prove the theorem using the second claim, note that if sz is a generator of W for some 8 € ®
then 8 = wa for some w € W’ and o € A (by the claim), so sg = wsew™' € W’. This means
{spg: €@} CW soW C W’ as we wanted to show! O

We can restate the second claim as the following, now that we know that W = W',

Corollary. If 8 € ® then there exists w € W with wf € A.
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