
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 3

1 Last time: reflection groups and root systems

Recall our usual setup: let V be a vector space over the real numbers R, with a symmetric, positive
definite, bilinear form (·, ·) : V × V → R.

The reflection with respect to a nonzero vector α ∈ V the linear map

sα : v 7→ v − 2(v,α)
(α,α) α.

The terminology comes from the fact that the vector sαv is given by “reflecting” v across the hyperplane
orthogonal to α.

A reflection group is a subgroup of the general linear group GL(V ) generated by a finite set of reflections.

Our goal is to classify the finite groups which are reflection groups. Examples of such groups include the
dihedral groups, symmetric groups, etc.

Let W be a finite reflection group.

We saw last time that if sα ∈W for some nonzero α ∈ V then swα = wsαw
−1 ∈W for all w ∈W . Thus

W acts on the set of lines spanned by vectors α with sα ∈ W . This set is finite since W is finite. The
notion of a root system gives an abstract model of this action.

A root system is a finite set Φ of nonzero vectors in V such that

(R1) Φ ∩ Rα = {α,−α} for each α ∈ Φ.

(R2) sα(β) ∈ Φ for all α, β ∈ Φ.

Elements of Φ are called roots. The group W = 〈sα : α ∈ Φ〉 is the reflection group associated to Φ.

We saw last time that any finite reflection group arises as the group associated to some root system, and
that conversely the reflection group associated to any root system is finite.

A total order on V is a transitive relation < on V such that

(1) Exactly one of a < b or a = b or b < a holds for each a, b ∈ V .

(2) If a < b then a+ c < b+ c for all a, b, c ∈ V .

(3) If x < y and c ∈ R is positive then cx < cy and −cy < −cx.

This list of conditions looks long, but just encodes our usual intuitions about total orderings of numbers.

The easiest way to construct a total order on V is to choose a basis v1, v2, . . . , vn and set
∑
i aivi <

∑
i bivi

if for some j ∈ [n] it holds that a1 = b1, a2 = b2, . . . , aj−1 = bj−1, and aj < bj .

Fact. Let < be a total order on V . If a1, a2, . . . , an, b1, b2, . . . , bn ∈ V are such that ai < bi for all i ∈ [n],
then

∑
i ai <

∑
i bi.

Proof. This follows by induction: if
∑n−1
i=1 ai <

∑n−1
i=1 bi then

∑n
i=1 ai < an+

∑n−1
i=1 bi < bn+

∑n−1
i=1 bi.

A positive system Π in a root system Φ is a set of the form {α ∈ Φ : 0 < α} where < is some total order
on V . Once we have chosen a total order, there is only one corresponding positive system in Φ, but if we
haven’t specified < then there are many choices for Π. For example, −Π is also a positive system (since
“>” is also a total order). The set Φ is the disjoint union of Π and −Π.

A simple system ∆ in a root system Φ is a subset of linearly independent roots with the property that
every α ∈ Φ can be written (uniquely) as α =

∑
β∈∆ cββ where either 0 ≤ minβ∈∆ cβ (all coefficients

positive) or maxβ∈∆ cβ ≤ 0 (all coefficients negative).

Positive systems obviously exist (why?), but it is not immediate from the definition that every root system
has a simple system. So the following result is nontrivial:
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Theorem. Every simple system in a root system is contained in a unique positive system. Every positive
system in a root system contains a unique simple system.

Proof. We proved the first statement last time. To prove the second, suppose Π is a positive system
in a root system Φ. Let ∆ be the minimal subset of Π such that each α ∈ Π is a nonnegative linear
combination of elements of ∆. To show that ∆ is a simple system, it is enough to check that the set is
linearly independent. For this, we need the following lemma:

Lemma. Let α, β ∈ ∆ with α 6= β. Then (α, β) ≤ 0.

Proof. Suppose (α, β) > 0. We argue by contradiction. Note that

sαβ = β − cα (*)

for c = 2(α,β)
(α,α) > 0. Suppose first that sαβ ∈ Π. We then have

sαβ =
∑
γ∈∆

cγγ (**)

for some nonnegative coefficients cγ , by definition. If the coefficient cβ < 0 then comparing (*) and (**)
shows that (1− cβ)β is a nonnegative linear combination of the elements of ∆ \ {β}, so the same is true
of β since 1− cβ > 0; but this means we cannot have β ∈ ∆, contradicting our assumption otherwise. If
cβ ≥ 1 then a similar comparison shows that 0 = (cβ − 1)β+ cα+

∑
γ∈∆\{β} cγγ. This is a contradiction

since the fact proved above implies 0 < (cβ − 1)β + cα+
∑
γ∈∆\{β} cγγ.

A similar argument leads to a contradiction if we assume instead that sαβ ∈ −Π. Since sαβ must belong
to Π or −Π since the union of these two is Φ, we relent and deduce that (α, β) ≤ 0.

The proof of the theorem from the lemma goes as follows: if ∆ were not linearly independent then we
could write

∑
bββ =

∑
cγγ 6= 0 where the sums are over disjoint subsets of ∆ and the coefficients bβ

and cγ are > 0. Let σ denote the common value of these linear combinations. We would then have
0 ≤ (σ, σ) =

∑
β,γ bβcγ(β, γ) ≤ 0, the first ≤ by positive definiteness and the second by the lemma. This

implies that (σ, σ) = 0 so σ = 0, which is a contradiction.

Conclude that ∆ is a simple system. (Why is it unique?)

Let us restate the lemma in the theorem as a corollary:

Corollary. If ∆ is a simple system in Φ then (α, β) ≤ 0 for all distinct α, β ∈ ∆.

We sometimes refer to the size of any simple system ∆ ⊂ Φ as the rank of the group W = 〈sα : α ∈ Φ〉.

2 Examples of root systems

What we have shown so far: given a root system Φ, we can always choose a total order <, which
determines a positive system Π, which determines a simple system ∆. There is a lot to unpack in this
statement, so we digress briefly with some simple examples of root systems.

If V = R2 with the standard bilinear form (v, w) = v1w1 + v2w2, then the following sets of 4, 6, and 8
vectors in V are root systems (namely, of types A1 ×A1, A2, and B2):
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The vectors labeled α and β in each picture make up simple system. (Why can there only be two simple
roots if V = R2? What is the corresponding positive system and total order on V ?)

We should also mention an example that lives in higher dimensions. Let V be the subset of vectors
v ∈ Rn whose coefficients in the standard basis sum to zero, i.e., with

∑n
i=1 vi = 0. This is a subspace of

dimension n− 1. Take (·, ·) to be the usual bilinear form on Rn restricted to V .

Define < as the total order on Rn induced by lexicographic order on the standard basis e1, e2, . . . , en.

Define Φ = {ei − ej : 1 ≤ i, j ≤ n and i 6= j}. For example, if n = 3 then

Φ = {e1 − e2, e1 − e3, e2 − e3, e2 − e1, e3 − e1, e3 − e2}.

Exercise:

(1) Φ is a root system.

(2) Π = {ei − ej : 1 ≤ i < j ≤ n} is a positive system in Φ.

(3) ∆ = {ei − ei+1 : i ∈ [n− 1]} is a simple system in Π.

Note at least that if i 6= j then (ei − ei+1, ej − ej+1) is either 0 or −1, as our earlier lemma predicted.

A natural thing to inquire: what is the associated reflection group W = 〈sα : α ∈ Φ〉?

Observe that

sei−ej (v) = v − 2(v,ei−ej)
(ei−ej ,ei−ej) (ei − ej) = v − (vi − vj)(ei − ej) = (v1, . . . , vj , . . . , vi, . . . , vn).

Thus sei−ej acts on V by transposing the ith and jth coordinates of vectors. It follows that there exists
an isomorphism Sn →W mapping the transposition (i, j) to sei−ej .

(What are the reflection groups associated to the example root systems in R2?)

3 Relating different simple systems

Let V be a real vector space with the usual symmetric, positive definite, bilinear form (·, ·).

Let Φ ⊂ V be a root system, Π ⊂ Φ a positive system, and ∆ ⊂ Π a simple system. There are a lot
of implicit choices made here. How important are these choices? As our last results today we will show
that the answer to this question is: not very.

Let W = 〈sα : α ∈ Φ〉.

Proposition. If α ∈ ∆ then sα(Π \ {α}) = Π \ {α}.
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Proof. Let β ∈ Π\{α}. Write β =
∑
γ∈∆ cγγ, where each coefficient cγ ∈ R is ≥ 0. Since Φ∩Rα = {±α},

there exists γ 6= α in ∆ with cγ > 0. Hence

sαβ = β − cα =
∑

γ∈∆\{α}

cγγ + (cα − c)α

for c = 2(α,β)
(α,α) . The last expression is a root, so it must be a positive root, since the coefficient cγ is

positive. For the same reason, this positive root cannot be α. Therefore sαβ ∈ Π \ {α}, so sα maps
Π \ {α} → Π \ {α}. Since sα is invertible, this map is a bijection.

Remember that sαα = −α.

Corollary. Let α ∈ ∆. Then {β ∈ Π : sαβ ∈ −Π} = {α}.

The group W not only preserves Φ, but permutes the set of simple/positive systems in Φ:

Theorem. Any two positive (respectively, simple) systems in Φ are conjugate under W , in the sense
that if Π, Π′ are positive systems and ∆, ∆′ are the unique simple systems they contain, then there exists
w ∈W with wΠ = Π′ and w∆ = ∆′.

Proof. It suffices to show this for positive systems. (Why?) Let Π and Π′ be two positive systems in Φ
Note that |Π| = |Π′| = |Φ|/2. We argue by induction on the number r = |Π∩−Π′|. If r = 0 then Π = Π′,
so take w = 1. Assume r > 0, so that Π 6⊂ Π′. Let ∆ be the unique simple system in Π. Then certainly
also ∆ 6⊂ Π′. Choose α ∈ ∆ with α ∈ −Π′. Then |sαΠ∩−Π′| = r−1 by the proposition. But sαΠ is also
a positive system (why?) so by induction there exists w ∈W with w(sαΠ) = Π′, i.e., (wsα)Π = Π′.

Our final theorem today is an analogue of a result we saw in the first lecture for the symmetric group.

Define a simple reflection to be a reflection sα where α ∈ ∆ is a simple root. Define the height of β ∈ Φ
relative to ∆ as ht(β) =

∑
α∈∆ cα where β =

∑
α∈∆ cαα.

Theorem. Let W = 〈sα : α ∈ Φ〉. Then W = 〈sα : α ∈ ∆〉.

Proof. Let W ′ = 〈sα : α ∈ ∆〉. Clearly W ′ ⊂ W . We want to show that W ⊂ W ′. We will deduce this
from two claims.

Claim. If β ∈ Π and γ is an element of minimal height in W ′β ∩Π then γ ∈ ∆.

Proof of claim. Write γ =
∑
α∈∆ cαα. Note that every cα ≥ 0 but 0 < (γ, γ) =

∑
α cα(γ, α), so (γ, α) > 0

for some α ∈ ∆. If γ 6= α then sαγ is positive by the previous proposition, but ht(sαγ) = ht(γ)− 2(γ,α)
(α,α) <

ht(γ) and sαγ ∈W ′β since sα ∈W ′, contradicting the minimality of the height of γ. So γ = α ∈ ∆.

Claim. W ′∆ = Φ.

Proof of claim. Π ⊂ W ′∆ since the W ′-orbit of each β ∈ Π intersects ∆ by the first claim. If β ∈ −Π
then −β = wα for some w ∈W ′ and α ∈ ∆, so β = wsαα ∈W ′∆, since wsα ∈W ′ and sαα = −α.

To prove the theorem using the second claim, note that if sβ is a generator of W for some β ∈ Φ
then β = wα for some w ∈ W ′ and α ∈ ∆ (by the claim), so sβ = wsαw

−1 ∈ W ′. This means
{sβ : β ∈ Φ} ⊂W ′ so W ⊂W ′ as we wanted to show!

We can restate the second claim as the following, now that we know that W = W ′.

Corollary. If β ∈ Φ then there exists w ∈W with wβ ∈ ∆.
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