1 Last time: reflection groups and root systems

Recall our usual setup: let V be a vector space over the real numbers \mathbb{R}, with a symmetric, positive definite, bilinear form $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$.

The reflection with respect to a nonzero vector $\alpha \in V$ the linear map

$$
s_{\alpha}: v \mapsto v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha .
$$

The terminology comes from the fact that the vector $s_{\alpha} v$ is given by "reflecting" v across the hyperplane orthogonal to α.
A reflection group is a subgroup of the general linear group $\mathrm{GL}(V)$ generated by a finite set of reflections.
Our goal is to classify the finite groups which are reflection groups. Examples of such groups include the dihedral groups, symmetric groups, etc.

Let W be a finite reflection group.
We saw last time that if $s_{\alpha} \in W$ for some nonzero $\alpha \in V$ then $s_{w \alpha}=w s_{\alpha} w^{-1} \in W$ for all $w \in W$. Thus W acts on the set of lines spanned by vectors α with $s_{\alpha} \in W$. This set is finite since W is finite. The notion of a root system gives an abstract model of this action.

A root system is a finite set Φ of nonzero vectors in V such that
(R1) $\Phi \cap \mathbb{R} \alpha=\{\alpha,-\alpha\}$ for each $\alpha \in \Phi$.
(R2) $s_{\alpha}(\beta) \in \Phi$ for all $\alpha, \beta \in \Phi$.
Elements of Φ are called roots. The group $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$ is the reflection group associated to Φ.
We saw last time that any finite reflection group arises as the group associated to some root system, and that conversely the reflection group associated to any root system is finite.

A total order on V is a transitive relation $<$ on V such that
(1) Exactly one of $a<b$ or $a=b$ or $b<a$ holds for each $a, b \in V$.
(2) If $a<b$ then $a+c<b+c$ for all $a, b, c \in V$.
(3) If $x<y$ and $c \in \mathbb{R}$ is positive then $c x<c y$ and $-c y<-c x$.

This list of conditions looks long, but just encodes our usual intuitions about total orderings of numbers.
The easiest way to construct a total order on V is to choose a basis $v_{1}, v_{2}, \ldots, v_{n}$ and set $\sum_{i} a_{i} v_{i}<\sum_{i} b_{i} v_{i}$ if for some $j \in[n]$ it holds that $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{j-1}=b_{j-1}$, and $a_{j}<b_{j}$.

Fact. Let $<$ be a total order on V. If $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n} \in V$ are such that $a_{i}<b_{i}$ for all $i \in[n]$, then $\sum_{i} a_{i}<\sum_{i} b_{i}$.

Proof. This follows by induction: if $\sum_{i=1}^{n-1} a_{i}<\sum_{i=1}^{n-1} b_{i}$ then $\sum_{i=1}^{n} a_{i}<a_{n}+\sum_{i=1}^{n-1} b_{i}<b_{n}+\sum_{i=1}^{n-1} b_{i}$.
A positive system Π in a root system Φ is a set of the form $\{\alpha \in \Phi: 0<\alpha\}$ where $<$ is some total order on V. Once we have chosen a total order, there is only one corresponding positive system in Φ, but if we haven't specified $<$ then there are many choices for Π. For example, $-\Pi$ is also a positive system (since " $>$ " is also a total order). The set Φ is the disjoint union of Π and $-\Pi$.

A simple system Δ in a root system Φ is a subset of linearly independent roots with the property that every $\alpha \in \Phi$ can be written (uniquely) as $\alpha=\sum_{\beta \in \Delta} c_{\beta} \beta$ where either $0 \leq \min _{\beta \in \Delta} c_{\beta}$ (all coefficients positive) or $\max _{\beta \in \Delta} c_{\beta} \leq 0$ (all coefficients negative).

Positive systems obviously exist (why?), but it is not immediate from the definition that every root system has a simple system. So the following result is nontrivial:

Theorem. Every simple system in a root system is contained in a unique positive system. Every positive system in a root system contains a unique simple system.

Proof. We proved the first statement last time. To prove the second, suppose Π is a positive system in a root system Φ. Let Δ be the minimal subset of Π such that each $\alpha \in \Pi$ is a nonnegative linear combination of elements of Δ. To show that Δ is a simple system, it is enough to check that the set is linearly independent. For this, we need the following lemma:

Lemma. Let $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$. Then $(\alpha, \beta) \leq 0$.
Proof. Suppose $(\alpha, \beta)>0$. We argue by contradiction. Note that

$$
\begin{equation*}
s_{\alpha} \beta=\beta-c \alpha \tag{*}
\end{equation*}
$$

for $c=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}>0$. Suppose first that $s_{\alpha} \beta \in \Pi$. We then have

$$
\begin{equation*}
s_{\alpha} \beta=\sum_{\gamma \in \Delta} c_{\gamma} \gamma \tag{**}
\end{equation*}
$$

for some nonnegative coefficients c_{γ}, by definition. If the coefficient $c_{\beta}<0$ then comparing $\left({ }^{*}\right)$ and (${ }^{* *}$) shows that $\left(1-c_{\beta}\right) \beta$ is a nonnegative linear combination of the elements of $\Delta \backslash\{\beta\}$, so the same is true of β since $1-c_{\beta}>0$; but this means we cannot have $\beta \in \Delta$, contradicting our assumption otherwise. If $c_{\beta} \geq 1$ then a similar comparison shows that $0=\left(c_{\beta}-1\right) \beta+c \alpha+\sum_{\gamma \in \Delta \backslash\{\beta\}} c_{\gamma} \gamma$. This is a contradiction since the fact proved above implies $0<\left(c_{\beta}-1\right) \beta+c \alpha+\sum_{\gamma \in \Delta \backslash\{\beta\}} c_{\gamma} \gamma$.
A similar argument leads to a contradiction if we assume instead that $s_{\alpha} \beta \in-\Pi$. Since $s_{\alpha} \beta$ must belong to Π or $-\Pi$ since the union of these two is Φ, we relent and deduce that $(\alpha, \beta) \leq 0$.

The proof of the theorem from the lemma goes as follows: if Δ were not linearly independent then we could write $\sum b_{\beta} \beta=\sum c_{\gamma} \gamma \neq 0$ where the sums are over disjoint subsets of Δ and the coefficients b_{β} and c_{γ} are >0. Let σ denote the common value of these linear combinations. We would then have $0 \leq(\sigma, \sigma)=\sum_{\beta, \gamma} b_{\beta} c_{\gamma}(\beta, \gamma) \leq 0$, the first \leq by positive definiteness and the second by the lemma. This implies that $(\sigma, \sigma)=0$ so $\sigma=0$, which is a contradiction.

Conclude that Δ is a simple system. (Why is it unique?)
Let us restate the lemma in the theorem as a corollary:
Corollary. If Δ is a simple system in Φ then $(\alpha, \beta) \leq 0$ for all distinct $\alpha, \beta \in \Delta$.
We sometimes refer to the size of any simple system $\Delta \subset \Phi$ as the rank of the group $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$.

2 Examples of root systems

What we have shown so far: given a root system Φ, we can always choose a total order $<$, which determines a positive system Π, which determines a simple system Δ. There is a lot to unpack in this statement, so we digress briefly with some simple examples of root systems.
If $V=\mathbb{R}^{2}$ with the standard bilinear form $(v, w)=v_{1} w_{1}+v_{2} w_{2}$, then the following sets of 4,6 , and 8 vectors in V are root systems (namely, of types $A_{1} \times A_{1}, A_{2}$, and B_{2}):

The vectors labeled α and β in each picture make up simple system. (Why can there only be two simple roots if $V=\mathbb{R}^{2}$? What is the corresponding positive system and total order on V ?)
We should also mention an example that lives in higher dimensions. Let V be the subset of vectors $v \in \mathbb{R}^{n}$ whose coefficients in the standard basis sum to zero, i.e., with $\sum_{i=1}^{n} v_{i}=0$. This is a subspace of dimension $n-1$. Take (\cdot, \cdot) to be the usual bilinear form on \mathbb{R}^{n} restricted to V.
Define $<$ as the total order on \mathbb{R}^{n} induced by lexicographic order on the standard basis $e_{1}, e_{2}, \ldots, e_{n}$.
Define $\Phi=\left\{e_{i}-e_{j}: 1 \leq i, j \leq n\right.$ and $\left.i \neq j\right\}$. For example, if $n=3$ then

$$
\Phi=\left\{e_{1}-e_{2}, e_{1}-e_{3}, e_{2}-e_{3}, e_{2}-e_{1}, e_{3}-e_{1}, e_{3}-e_{2}\right\}
$$

Exercise:
(1) Φ is a root system.
(2) $\Pi=\left\{e_{i}-e_{j}: 1 \leq i<j \leq n\right\}$ is a positive system in Φ.
(3) $\Delta=\left\{e_{i}-e_{i+1}: i \in[n-1]\right\}$ is a simple system in Π.

Note at least that if $i \neq j$ then $\left(e_{i}-e_{i+1}, e_{j}-e_{j+1}\right)$ is either 0 or -1 , as our earlier lemma predicted.
A natural thing to inquire: what is the associated reflection group $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$?
Observe that

$$
s_{e_{i}-e_{j}}(v)=v-\frac{2\left(v, e_{i}-e_{j}\right)}{\left(e_{i}-e_{j}, e_{i}-e_{j}\right)}\left(e_{i}-e_{j}\right)=v-\left(v_{i}-v_{j}\right)\left(e_{i}-e_{j}\right)=\left(v_{1}, \ldots, v_{j}, \ldots, v_{i}, \ldots, v_{n}\right)
$$

Thus $s_{e_{i}-e_{j}}$ acts on V by transposing the i th and j th coordinates of vectors. It follows that there exists an isomorphism $S_{n} \rightarrow W$ mapping the transposition (i, j) to $s_{e_{i}-e_{j}}$.
(What are the reflection groups associated to the example root systems in \mathbb{R}^{2} ?)

3 Relating different simple systems

Let V be a real vector space with the usual symmetric, positive definite, bilinear form (\cdot, \cdot).
Let $\Phi \subset V$ be a root system, $\Pi \subset \Phi$ a positive system, and $\Delta \subset \Pi$ a simple system. There are a lot of implicit choices made here. How important are these choices? As our last results today we will show that the answer to this question is: not very.

Let $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$.
Proposition. If $\alpha \in \Delta$ then $s_{\alpha}(\Pi \backslash\{\alpha\})=\Pi \backslash\{\alpha\}$.

Proof. Let $\beta \in \Pi \backslash\{\alpha\}$. Write $\beta=\sum_{\gamma \in \Delta} c_{\gamma} \gamma$, where each coefficient $c_{\gamma} \in \mathbb{R}$ is ≥ 0. Since $\Phi \cap \mathbb{R} \alpha=\{ \pm \alpha\}$, there exists $\gamma \neq \alpha$ in Δ with $c_{\gamma}>0$. Hence

$$
s_{\alpha} \beta=\beta-c \alpha=\sum_{\gamma \in \Delta \backslash\{\alpha\}} c_{\gamma} \gamma+\left(c_{\alpha}-c\right) \alpha
$$

for $c=\frac{2(\alpha, \beta)}{(\alpha, \alpha)}$. The last expression is a root, so it must be a positive root, since the coefficient c_{γ} is positive. For the same reason, this positive root cannot be α. Therefore $s_{\alpha} \beta \in \Pi \backslash\{\alpha\}$, so s_{α} maps $\Pi \backslash\{\alpha\} \rightarrow \Pi \backslash\{\alpha\}$. Since s_{α} is invertible, this map is a bijection.

Remember that $s_{\alpha} \alpha=-\alpha$.
Corollary. Let $\alpha \in \Delta$. Then $\left\{\beta \in \Pi: s_{\alpha} \beta \in-\Pi\right\}=\{\alpha\}$.
The group W not only preserves Φ, but permutes the set of simple/positive systems in Φ :
Theorem. Any two positive (respectively, simple) systems in Φ are conjugate under W, in the sense that if Π, Π^{\prime} are positive systems and Δ, Δ^{\prime} are the unique simple systems they contain, then there exists $w \in W$ with $w \Pi=\Pi^{\prime}$ and $w \Delta=\Delta^{\prime}$.

Proof. It suffices to show this for positive systems. (Why?) Let Π and Π^{\prime} be two positive systems in Φ Note that $|\Pi|=\left|\Pi^{\prime}\right|=|\Phi| / 2$. We argue by induction on the number $r=\left|\Pi \cap-\Pi^{\prime}\right|$. If $r=0$ then $\Pi=\Pi^{\prime}$, so take $w=1$. Assume $r>0$, so that $\Pi \not \subset \Pi^{\prime}$. Let Δ be the unique simple system in Π. Then certainly also $\Delta \not \subset \Pi^{\prime}$. Choose $\alpha \in \Delta$ with $\alpha \in-\Pi^{\prime}$. Then $\left|s_{\alpha} \Pi \cap-\Pi^{\prime}\right|=r-1$ by the proposition. But $s_{\alpha} \Pi$ is also a positive system (why?) so by induction there exists $w \in W$ with $w\left(s_{\alpha} \Pi\right)=\Pi^{\prime}$, i.e., $\left(w s_{\alpha}\right) \Pi=\Pi^{\prime}$.

Our final theorem today is an analogue of a result we saw in the first lecture for the symmetric group.
Define a simple reflection to be a reflection s_{α} where $\alpha \in \Delta$ is a simple root. Define the height of $\beta \in \Phi$ relative to Δ as $\operatorname{ht}(\beta)=\sum_{\alpha \in \Delta} c_{\alpha}$ where $\beta=\sum_{\alpha \in \Delta} c_{\alpha} \alpha$.

Theorem. Let $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$. Then $W=\left\langle s_{\alpha}: \alpha \in \Delta\right\rangle$.
Proof. Let $W^{\prime}=\left\langle s_{\alpha}: \alpha \in \Delta\right\rangle$. Clearly $W^{\prime} \subset W$. We want to show that $W \subset W^{\prime}$. We will deduce this from two claims.

Claim. If $\beta \in \Pi$ and γ is an element of minimal height in $W^{\prime} \beta \cap \Pi$ then $\gamma \in \Delta$.
Proof of claim. Write $\gamma=\sum_{\alpha \in \Delta} c_{\alpha} \alpha$. Note that every $c_{\alpha} \geq 0$ but $0<(\gamma, \gamma)=\sum_{\alpha} c_{\alpha}(\gamma, \alpha)$, so $(\gamma, \alpha)>0$ for some $\alpha \in \Delta$. If $\gamma \neq \alpha$ then $s_{\alpha} \gamma$ is positive by the previous proposition, but ht $\left(s_{\alpha} \gamma\right)=\operatorname{ht}(\gamma)-\frac{2(\gamma, \alpha)}{(\alpha, \alpha)}<$ $\operatorname{ht}(\gamma)$ and $s_{\alpha} \gamma \in W^{\prime} \beta$ since $s_{\alpha} \in W^{\prime}$, contradicting the minimality of the height of γ. So $\gamma=\alpha \in \Delta$.

Claim. $W^{\prime} \Delta=\Phi$.

Proof of claim. $\Pi \subset W^{\prime} \Delta$ since the W^{\prime}-orbit of each $\beta \in \Pi$ intersects Δ by the first claim. If $\beta \in-\Pi$ then $-\beta=w \alpha$ for some $w \in W^{\prime}$ and $\alpha \in \Delta$, so $\beta=w s_{\alpha} \alpha \in W^{\prime} \Delta$, since $w s_{\alpha} \in W^{\prime}$ and $s_{\alpha} \alpha=-\alpha$.

To prove the theorem using the second claim, note that if s_{β} is a generator of W for some $\beta \in \Phi$ then $\beta=w \alpha$ for some $w \in W^{\prime}$ and $\alpha \in \Delta$ (by the claim), so $s_{\beta}=w s_{\alpha} w^{-1} \in W^{\prime}$. This means $\left\{s_{\beta}: \beta \in \Phi\right\} \subset W^{\prime}$ so $W \subset W^{\prime}$ as we wanted to show!

We can restate the second claim as the following, now that we know that $W=W^{\prime}$.
Corollary. If $\beta \in \Phi$ then there exists $w \in W$ with $w \beta \in \Delta$.

