MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 4

1 Last time: generation by simple reflection

As usual V is a real vector space with a symmetric, positive definite, bilinear form (-,-) : V x V — R.
The reflection with respect to a nonzero vector o € V' is the linear map

So U U — %a
A reflection group is a subgroup of the general linear group GL(V') generated by a finite set of reflections.

Our goal is to classify the finite groups which are reflection groups.

Definition. A root system is a finite set ® of nonzero vectors in V' such that

(R1) ® NRa = {a, —a} for each a € ®.

(R2) s4(B) € ® for all o, 3 € D.

Elements of @ are called roots. The group W = (s, : a € ®) is the reflection group associated to ®.
Some properties shown in previous lectures which clarify the relationship between W and ®:

Fact. If W C GL(V) is a finite reflection group then ® = {a € V : (a,a) = 1 and s, € W} is a root
system, for which W = (s, : @ € ®) is the associated reflection group

Fact. On the other hand, if ® is a root system then the associated reflection group is finite.

Definition. A total order on V is a transitive relation < on V such that
(1) Exactly one of a < b or a=>bor b < a holds for each a,b € V.
(2) If a < bthen a4+ c < b+ cforall a,b,ce V.
(3) If z < y and ¢ € R is positive then cz < cy and —cy < —cz.

(How many total orders does V have if the space is 1-dimensional?)

To construct a total order on V', choose a basis v1,vs, ..., v, and set Y, a;v; < . byv; if for some j € [n]
it holds that ay = by, ag = bs, ..., aj—1 = bj_l, and a; < bj.

Let @ be a root sytsem.

Definition. A positive system II is a set of the form {a € ® : 0 < a} where < is some total order on V.

Note: & =11 U —II if IT is a positive system.

Definition. A simple system A is a linearly independent subset of ® with ® = (RTAN®)U(RTAN D).

Summarizing the important properties of root systems that have been shown so far:

Theorem. Let ® be a root system with associated reflection group W = (s, : @ € ).
(1) Each positive system in ® contains a unique simple system.
(2) Each simple system in ® is contained in a unique positive system.
(3) If Ay and Ay are two simple systems in ® then Ay = wAy for some w € W.
(4) If A is a simple system in ® then W = (s, : a € A).

Two noteworthy properties that went into the proofs of the preceding list:

Proposition. Let ® be a root system and W = (s, : « € P).
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(1) If A C @ is a simple system then (o, 8) < 0 for all @ # S in A.
(2) If € @ then wp € A for some w € W.
(3) If A C II are simple/positive systems in ® and o € A then s, II = (IT\ {a}) U {—a}.

Probably in the next lecture we will stop repeating all of these definitions and foundational properties,
which are getting quite familiar!

2 Length function

Fix a root system ® with simple system A. Write II for the unique positive system containing A and <
for the associated total order. Let W = (so : @ € ®) = (s, : @ € A). Not only is the reflection group W
generated by the set of simple reflections, but W is isomorphic to the finitely presented group

W 2 (x, for a € A: (zq25)™ %) =1 for a, 8 € A)

where m(«, 8) denotes the order of the product s,sg in W. Here “z,” is just a formal symbol, since
the right hand group is a quotient of the free group on A. On the other hand, note that s, is a specific
invertible linear map. By construction, there exists a unique surjective homomorphism from the group
on the right to W, mapping z,, — s, for each « € A. (This claim is more or less the definition of a group
presentation.) The miracle is that this homomorphism is actually a bijection.

As a tool for proving this fact next time, today we introduce the length function on W. Let
S ={sa:acA}

and define the length of w € W (relative to A) as the smallest integer » > 0 such that w = s182--- s,
where each s; € S. Denote this number by £(w).

Remarks. Some simple properties that fall right out of the definition:
(1) £(1) = 0, since products with zero factors evaluate to the identity by convention.
(2) 4(w) =1 if and only if w € S, certainly.
(3) L(w™t) = £(w), since each factorization of w is the reverse of a factorization of w=!.

Implicitly, ® is a subset of some vector space V with a positive definite symmetric bilinear form. We
might as well assume that V' = RA so that the simple system A is a basis for V.

Proposition. The determinant of s € S as a linear map V' — V is —1.
Therefore det(w) = (—1)*™) for each w € W.
Proof. With respect to the basis by, bs,...,b, of V, where by = « and bs,...,b, span the hyperplane

orthogonal to «, the matrix of s = s, is diag(—1,1,...,1) so has determinant —1. The statement about
det(w) follows since det(AB) = det(A) det(B). O

Corollary. If u,v € W then ¢(uv) and ¢(u) + £(v) are either both even or both odd.

Proof. Note that (—1)/?) = det(uv) = det(u) det(v) = (—1)4W+®), O

Corollary. If w € W and s € S and ¢(w) = r, then f(ws) =r £ 1.

Proof. Certainly r — 1 < f(ws) < r+ 1 (why?) and £(ws) Z ¢(w) (mod 2). O
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The definition of ¢ : W — N is very general, and would make sense for any group relative to a given
generating set. The remarkable thing about the length function of a reflection group is that ¢(w) also
has a very concrete geometric formula in terms of how w acts on the root system ®.

For w € W, define n(w) as the number of positive roots a € II with wa € —11

Recall that “a € II” means the same thing as “a > 0.”

Lemma. Let o € A and w e W.

(a) If wa > 0 then n(ws,) = n(w) + 1.
(b) If wa < 0 then n(wsy) = n(w) — 1.
(c) If w™ra > 0 then n(sqw) = n(w) + 1.
(d) If wra < 0 then n(s,w) = n(w) — 1

Proof. Define II(w) = {B € Il : wp € —1II} so that n(w) = [II(w)|.
If wa > 0 then M(wsy) = soIl(w) U {a} since s, permutes IT\ {a}. Part (a) follows.
If wa < 0 then, by the same observation, s,II(wsy) = II(w) \ {a} while a € II(w). Part (b) follows.

Parts (c) and (d) follow by replacing w by w~! and noting that n(w=!) = n(w). O

Corollary. If w € W and w = s182 - - - 8 where each s; € S then n(w) < r, so n(w) < £(w).

Proof. The lemma shows that applying n to the elements 1, sy, $182, 18283, ..., $182--- 8, yields a
sequence of integers, beginning with 0, in which successive numbers differ by at most one. O

We require a stronger result to deduce the opposite inequality.
Theorem (Exchange principle). Let w = s183- - s, where each s; € S and s; = s,, for the simple root
a; € A. Assume n(w) < r. Then there exist indices 1 <4 < j < r such that

(&) a; = (sit1- - sj-1)ay.

(b) Si+1Si42 "S5 = SiSi41 " Sj—1-

(¢c) w=s1---8---5; -5 where for each ~ we omit the capped factor.
In other words, we can omit two factors from siss - - - s, without changing the product.
Proof. Iterate part (a) of the lemma to deduce that there exists an index j < r with (s1---sj_1)a; < 0.
Since «; > 0, there exists ¢ < j with s;(s;41---sj-1)a; < 0 while (s;41---5j_1)a; > 0. Let a =

(Sit1---8j-1)a; € II. Since s;a0 < 0, it must hold that o = ; since this is the only positive root which
s; makes negative. We thus obtain part (a).

Now set & = oj and v = s;11 -+~ 5j_1 so that v = o; by the first part. We then have VSV ™' = 8yq = i,
so vs; = s;v. Replacing v by s;41---s;_1 gives part (b).

Part (c) follows by multiplying both sides of the identity in part (b) by s;---s;—1 on the left and by
Sj41-- -8y on the right. O

Corollary. If w € W then {(w) = n(w).

Proof. We already saw that n(w) < ¢(w). This inequality cannot be strict since the exchange principle
would then imply that we could write w as a product of £(w) — 2 simple generators, a contradiction. [
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The proof of the theorem indicates an effective procedure for determining precisely which positive roots
w € W makes negative. We call “w = s1s2---5,” a reduced expression if each s; € S and {(w) = 7.

Proposition. Let w € W. Suppose w = s152--- s, is a reduced expression. Let a; € A be such that
$i = Sa,;. Define 5, = a, and B; = (84801 8;41)e; for @ € [r —1]. Then By, 5s,..., 5, are distinct
positive roots and {« € Il : wa € =11} = {B4,..., 5 }.

Proof. Let B € II be such that wg < 0.

We can then find an index ¢ < 7 such that (sj41---8.)8 > 0 but (s;8i41---8.)8 < 0. Let a =
Sit1 -+ SpP € Il. Since s;a < 0, we must have o = i, 80 B = s, -+ Sj105 = ;.

Thus {a € IT : wa € =11} C {f1, ..., Br}. The containment is equality and the 3;’s are distinct since the
first set has size r by assumption. O

Next time: a presentation for W.
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