
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 4

1 Last time: generation by simple reflection

As usual V is a real vector space with a symmetric, positive definite, bilinear form (·, ·) : V × V → R.

The reflection with respect to a nonzero vector α ∈ V is the linear map

sα : v 7→ v − 2(v,α)
(α,α) α.

A reflection group is a subgroup of the general linear group GL(V ) generated by a finite set of reflections.

Our goal is to classify the finite groups which are reflection groups.

Definition. A root system is a finite set Φ of nonzero vectors in V such that

(R1) Φ ∩ Rα = {α,−α} for each α ∈ Φ.

(R2) sα(β) ∈ Φ for all α, β ∈ Φ.

Elements of Φ are called roots. The group W = 〈sα : α ∈ Φ〉 is the reflection group associated to Φ.

Some properties shown in previous lectures which clarify the relationship between W and Φ:

Fact. If W ⊂ GL(V ) is a finite reflection group then Φ = {α ∈ V : (α, α) = 1 and sα ∈ W} is a root
system, for which W = 〈sα : α ∈ Φ〉 is the associated reflection group

Fact. On the other hand, if Φ is a root system then the associated reflection group is finite.

Definition. A total order on V is a transitive relation < on V such that

(1) Exactly one of a < b or a = b or b < a holds for each a, b ∈ V .

(2) If a < b then a+ c < b+ c for all a, b, c ∈ V .

(3) If x < y and c ∈ R is positive then cx < cy and −cy < −cx.

(How many total orders does V have if the space is 1-dimensional?)

To construct a total order on V , choose a basis v1, v2, . . . , vn and set
∑
i aivi <

∑
i bivi if for some j ∈ [n]

it holds that a1 = b1, a2 = b2, . . . , aj−1 = bj−1, and aj < bj .

Let Φ be a root sytsem.

Definition. A positive system Π is a set of the form {α ∈ Φ : 0 < α} where < is some total order on V .

Note: Φ = Π t −Π if Π is a positive system.

Definition. A simple system ∆ is a linearly independent subset of Φ with Φ = (R+∆ ∩ Φ)t (R−∆ ∩ Φ).

Summarizing the important properties of root systems that have been shown so far:

Theorem. Let Φ be a root system with associated reflection group W = 〈sα : α ∈ Φ〉.

(1) Each positive system in Φ contains a unique simple system.

(2) Each simple system in Φ is contained in a unique positive system.

(3) If ∆1 and ∆2 are two simple systems in Φ then ∆1 = w∆2 for some w ∈W .

(4) If ∆ is a simple system in Φ then W = 〈sα : α ∈ ∆〉.

Two noteworthy properties that went into the proofs of the preceding list:

Proposition. Let Φ be a root system and W = 〈sα : α ∈ Φ〉.
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(1) If ∆ ⊂ Φ is a simple system then (α, β) ≤ 0 for all α 6= β in ∆.

(2) If β ∈ Φ then wβ ∈ ∆ for some w ∈W .

(3) If ∆ ⊂ Π are simple/positive systems in Φ and α ∈ ∆ then sαΠ = (Π \ {α}) ∪ {−α}.

Probably in the next lecture we will stop repeating all of these definitions and foundational properties,
which are getting quite familiar!

2 Length function

Fix a root system Φ with simple system ∆. Write Π for the unique positive system containing ∆ and <
for the associated total order. Let W = 〈sα : α ∈ Φ〉 = 〈sα : α ∈ ∆〉. Not only is the reflection group W
generated by the set of simple reflections, but W is isomorphic to the finitely presented group

W ∼= 〈xα for α ∈ ∆ : (xαxβ)m(α,β) = 1 for α, β ∈ ∆〉

where m(α, β) denotes the order of the product sαsβ in W . Here “xα” is just a formal symbol, since
the right hand group is a quotient of the free group on ∆. On the other hand, note that sα is a specific
invertible linear map. By construction, there exists a unique surjective homomorphism from the group
on the right to W , mapping xα 7→ sα for each α ∈ ∆. (This claim is more or less the definition of a group
presentation.) The miracle is that this homomorphism is actually a bijection.

As a tool for proving this fact next time, today we introduce the length function on W . Let

S = {sα : α ∈ ∆}

and define the length of w ∈ W (relative to ∆) as the smallest integer r ≥ 0 such that w = s1s2 · · · sr
where each si ∈ S. Denote this number by `(w).

Remarks. Some simple properties that fall right out of the definition:

(1) `(1) = 0, since products with zero factors evaluate to the identity by convention.

(2) `(w) = 1 if and only if w ∈ S, certainly.

(3) `(w−1) = `(w), since each factorization of w is the reverse of a factorization of w−1.

Implicitly, Φ is a subset of some vector space V with a positive definite symmetric bilinear form. We
might as well assume that V = R∆ so that the simple system ∆ is a basis for V .

Proposition. The determinant of s ∈ S as a linear map V → V is −1.

Therefore det(w) = (−1)`(w) for each w ∈W .

Proof. With respect to the basis b1, b2, . . . , bn of V , where b1 = α and b2, . . . , bn span the hyperplane
orthogonal to α, the matrix of s = sα is diag(−1, 1, . . . , 1) so has determinant −1. The statement about
det(w) follows since det(AB) = det(A) det(B).

Corollary. If u, v ∈W then `(uv) and `(u) + `(v) are either both even or both odd.

Proof. Note that (−1)`(uv) = det(uv) = det(u) det(v) = (−1)`(u)+`(v).

Corollary. If w ∈W and s ∈ S and `(w) = r, then `(ws) = r ± 1.

Proof. Certainly r − 1 ≤ `(ws) ≤ r + 1 (why?) and `(ws) 6≡ `(w) (mod 2).

2



MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 4

The definition of ` : W → N is very general, and would make sense for any group relative to a given
generating set. The remarkable thing about the length function of a reflection group is that `(w) also
has a very concrete geometric formula in terms of how w acts on the root system Φ.

For w ∈W , define n(w) as the number of positive roots α ∈ Π with wα ∈ −Π

Recall that “α ∈ Π” means the same thing as “α > 0.”

Lemma. Let α ∈ ∆ and w ∈W .

(a) If wα > 0 then n(wsα) = n(w) + 1.

(b) If wα < 0 then n(wsα) = n(w)− 1.

(c) If w−1α > 0 then n(sαw) = n(w) + 1.

(d) If w−1α < 0 then n(sαw) = n(w)− 1.

Proof. Define Π(w) = {β ∈ Π : wβ ∈ −Π} so that n(w) = |Π(w)|.

If wα > 0 then Π(wsα) = sαΠ(w) t {α} since sα permutes Π \ {α}. Part (a) follows.

If wα < 0 then, by the same observation, sαΠ(wsα) = Π(w) \ {α} while α ∈ Π(w). Part (b) follows.

Parts (c) and (d) follow by replacing w by w−1 and noting that n(w−1) = n(w).

Corollary. If w ∈W and w = s1s2 · · · sr where each si ∈ S then n(w) ≤ r, so n(w) ≤ `(w).

Proof. The lemma shows that applying n to the elements 1, s1, s1s2, s1s2s3, . . . , s1s2 · · · sr yields a
sequence of integers, beginning with 0, in which successive numbers differ by at most one.

We require a stronger result to deduce the opposite inequality.

Theorem (Exchange principle). Let w = s1s2 · · · sr where each si ∈ S and si = sαi
for the simple root

αi ∈ ∆. Assume n(w) < r. Then there exist indices 1 ≤ i < j ≤ r such that

(a) αi = (si+1 · · · sj−1)αj .

(b) si+1si+2 · · · sj = sisi+1 · · · sj−1.

(c) w = s1 · · · ŝi · · · ŝj · · · sr where for each ̂ we omit the capped factor.

In other words, we can omit two factors from s1s2 · · · sr without changing the product.

Proof. Iterate part (a) of the lemma to deduce that there exists an index j ≤ r with (s1 · · · sj−1)αj < 0.
Since αj > 0, there exists i < j with si(si+1 · · · sj−1)αj < 0 while (si+1 · · · sj−1)αj > 0. Let α =
(si+1 · · · sj−1)αj ∈ Π. Since siα < 0, it must hold that α = αi since this is the only positive root which
si makes negative. We thus obtain part (a).

Now set α = αj and v = si+1 · · · sj−1 so that vα = αi by the first part. We then have vsαv
−1 = svα = si,

so vsj = siv. Replacing v by si+1 · · · sj−1 gives part (b).

Part (c) follows by multiplying both sides of the identity in part (b) by s1 · · · si−1 on the left and by
sj+1 · · · sr on the right.

Corollary. If w ∈W then `(w) = n(w).

Proof. We already saw that n(w) ≤ `(w). This inequality cannot be strict since the exchange principle
would then imply that we could write w as a product of `(w)− 2 simple generators, a contradiction.
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The proof of the theorem indicates an effective procedure for determining precisely which positive roots
w ∈W makes negative. We call “w = s1s2 · · · sr” a reduced expression if each si ∈ S and `(w) = r.

Proposition. Let w ∈ W . Suppose w = s1s2 · · · sr is a reduced expression. Let αi ∈ ∆ be such that
si = sαi

. Define βr = αr and βi = (srsr−1 · · · si+1)αi for i ∈ [r − 1]. Then β1, β2, . . . , βr are distinct
positive roots and {α ∈ Π : wα ∈ −Π} = {β1, . . . , βr}.

Proof. Let β ∈ Π be such that wβ < 0.

We can then find an index i ≤ r such that (si+1 · · · sr)β > 0 but (sisi+1 · · · sr)β < 0. Let α =
si+1 · · · srβ ∈ Π. Since siα < 0, we must have α = αi, so β = sr · · · si+1αi = βi.

Thus {α ∈ Π : wα ∈ −Π} ⊂ {β1, . . . , βr}. The containment is equality and the βi’s are distinct since the
first set has size r by assumption.

Next time: a presentation for W .
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