1 Last time: generation by simple reflection

As usual V is a real vector space with a symmetric, positive definite, bilinear form $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$. The reflection with respect to a nonzero vector $\alpha \in V$ is the linear map

$$
s_{\alpha}: v \mapsto v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha
$$

A reflection group is a subgroup of the general linear group $\mathrm{GL}(V)$ generated by a finite set of reflections.
Our goal is to classify the finite groups which are reflection groups.
Definition. A root system is a finite set Φ of nonzero vectors in V such that
(R1) $\Phi \cap \mathbb{R} \alpha=\{\alpha,-\alpha\}$ for each $\alpha \in \Phi$.
(R2) $s_{\alpha}(\beta) \in \Phi$ for all $\alpha, \beta \in \Phi$.
Elements of Φ are called roots. The group $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$ is the reflection group associated to Φ.
Some properties shown in previous lectures which clarify the relationship between W and Φ :
Fact. If $W \subset \mathrm{GL}(V)$ is a finite reflection group then $\Phi=\left\{\alpha \in V:(\alpha, \alpha)=1\right.$ and $\left.s_{\alpha} \in W\right\}$ is a root system, for which $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$ is the associated reflection group

Fact. On the other hand, if Φ is a root system then the associated reflection group is finite.
Definition. A total order on V is a transitive relation $<$ on V such that
(1) Exactly one of $a<b$ or $a=b$ or $b<a$ holds for each $a, b \in V$.
(2) If $a<b$ then $a+c<b+c$ for all $a, b, c \in V$.
(3) If $x<y$ and $c \in \mathbb{R}$ is positive then $c x<c y$ and $-c y<-c x$.
(How many total orders does V have if the space is 1-dimensional?)
To construct a total order on V, choose a basis $v_{1}, v_{2}, \ldots, v_{n}$ and set $\sum_{i} a_{i} v_{i}<\sum_{i} b_{i} v_{i}$ if for some $j \in[n]$ it holds that $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{j-1}=b_{j-1}$, and $a_{j}<b_{j}$.
Let Φ be a root sytsem.
Definition. A positive system Π is a set of the form $\{\alpha \in \Phi: 0<\alpha\}$ where $<$ is some total order on V.
Note: $\Phi=\Pi \sqcup-\Pi$ if Π is a positive system.
Definition. A simple system Δ is a linearly independent subset of Φ with $\Phi=\left(\mathbb{R}^{+} \Delta \cap \Phi\right) \sqcup\left(\mathbb{R}^{-} \Delta \cap \Phi\right)$. Summarizing the important properties of root systems that have been shown so far:

Theorem. Let Φ be a root system with associated reflection group $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$.
(1) Each positive system in Φ contains a unique simple system.
(2) Each simple system in Φ is contained in a unique positive system.
(3) If Δ_{1} and Δ_{2} are two simple systems in Φ then $\Delta_{1}=w \Delta_{2}$ for some $w \in W$.
(4) If Δ is a simple system in Φ then $W=\left\langle s_{\alpha}: \alpha \in \Delta\right\rangle$.

Two noteworthy properties that went into the proofs of the preceding list:
Proposition. Let Φ be a root system and $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$.
(1) If $\Delta \subset \Phi$ is a simple system then $(\alpha, \beta) \leq 0$ for all $\alpha \neq \beta$ in Δ.
(2) If $\beta \in \Phi$ then $w \beta \in \Delta$ for some $w \in W$.
(3) If $\Delta \subset \Pi$ are simple/positive systems in Φ and $\alpha \in \Delta$ then $s_{\alpha} \Pi=(\Pi \backslash\{\alpha\}) \cup\{-\alpha\}$.

Probably in the next lecture we will stop repeating all of these definitions and foundational properties, which are getting quite familiar!

2 Length function

Fix a root system Φ with simple system Δ. Write Π for the unique positive system containing Δ and $<$ for the associated total order. Let $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle=\left\langle s_{\alpha}: \alpha \in \Delta\right\rangle$. Not only is the reflection group W generated by the set of simple reflections, but W is isomorphic to the finitely presented group

$$
W \cong\left\langle x_{\alpha} \text { for } \alpha \in \Delta:\left(x_{\alpha} x_{\beta}\right)^{m(\alpha, \beta)}=1 \text { for } \alpha, \beta \in \Delta\right\rangle
$$

where $m(\alpha, \beta)$ denotes the order of the product $s_{\alpha} s_{\beta}$ in W. Here " x_{α} " is just a formal symbol, since the right hand group is a quotient of the free group on Δ. On the other hand, note that s_{α} is a specific invertible linear map. By construction, there exists a unique surjective homomorphism from the group on the right to W, mapping $x_{\alpha} \mapsto s_{\alpha}$ for each $\alpha \in \Delta$. (This claim is more or less the definition of a group presentation.) The miracle is that this homomorphism is actually a bijection.
As a tool for proving this fact next time, today we introduce the length function on W. Let

$$
S=\left\{s_{\alpha}: \alpha \in \Delta\right\}
$$

and define the length of $w \in W$ (relative to Δ) as the smallest integer $r \geq 0$ such that $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$. Denote this number by $\ell(w)$.

Remarks. Some simple properties that fall right out of the definition:
(1) $\ell(1)=0$, since products with zero factors evaluate to the identity by convention.
(2) $\ell(w)=1$ if and only if $w \in S$, certainly.
(3) $\ell\left(w^{-1}\right)=\ell(w)$, since each factorization of w is the reverse of a factorization of w^{-1}.

Implicitly, Φ is a subset of some vector space V with a positive definite symmetric bilinear form. We might as well assume that $V=\mathbb{R} \Delta$ so that the simple system Δ is a basis for V.

Proposition. The determinant of $s \in S$ as a linear map $V \rightarrow V$ is -1 .
Therefore $\operatorname{det}(w)=(-1)^{\ell(w)}$ for each $w \in W$.
Proof. With respect to the basis $b_{1}, b_{2}, \ldots, b_{n}$ of V, where $b_{1}=\alpha$ and b_{2}, \ldots, b_{n} span the hyperplane orthogonal to α, the matrix of $s=s_{\alpha}$ is $\operatorname{diag}(-1,1, \ldots, 1)$ so has determinant -1 . The statement about $\operatorname{det}(w)$ follows since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Corollary. If $u, v \in W$ then $\ell(u v)$ and $\ell(u)+\ell(v)$ are either both even or both odd.
Proof. Note that $(-1)^{\ell(u v)}=\operatorname{det}(u v)=\operatorname{det}(u) \operatorname{det}(v)=(-1)^{\ell(u)+\ell(v)}$.

Corollary. If $w \in W$ and $s \in S$ and $\ell(w)=r$, then $\ell(w s)=r \pm 1$.
Proof. Certainly $r-1 \leq \ell(w s) \leq r+1($ why? $)$ and $\ell(w s) \not \equiv \ell(w)(\bmod 2)$.

The definition of $\ell: W \rightarrow \mathbb{N}$ is very general, and would make sense for any group relative to a given generating set. The remarkable thing about the length function of a reflection group is that $\ell(w)$ also has a very concrete geometric formula in terms of how w acts on the root system Φ.

For $w \in W$, define $n(w)$ as the number of positive roots $\alpha \in \Pi$ with $w \alpha \in-\Pi$
Recall that " $\alpha \in \Pi$ " means the same thing as " $\alpha>0$."
Lemma. Let $\alpha \in \Delta$ and $w \in W$.
(a) If $w \alpha>0$ then $n\left(w s_{\alpha}\right)=n(w)+1$.
(b) If $w \alpha<0$ then $n\left(w s_{\alpha}\right)=n(w)-1$.
(c) If $w^{-1} \alpha>0$ then $n\left(s_{\alpha} w\right)=n(w)+1$.
(d) If $w^{-1} \alpha<0$ then $n\left(s_{\alpha} w\right)=n(w)-1$.

Proof. Define $\Pi(w)=\{\beta \in \Pi: w \beta \in-\Pi\}$ so that $n(w)=|\Pi(w)|$.
If $w \alpha>0$ then $\Pi\left(w s_{\alpha}\right)=s_{\alpha} \Pi(w) \sqcup\{\alpha\}$ since s_{α} permutes $\Pi \backslash\{\alpha\}$. Part (a) follows.
If $w \alpha<0$ then, by the same observation, $s_{\alpha} \Pi\left(w s_{\alpha}\right)=\Pi(w) \backslash\{\alpha\}$ while $\alpha \in \Pi(w)$. Part (b) follows.
Parts (c) and (d) follow by replacing w by w^{-1} and noting that $n\left(w^{-1}\right)=n(w)$.

Corollary. If $w \in W$ and $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$ then $n(w) \leq r$, so $n(w) \leq \ell(w)$.
Proof. The lemma shows that applying n to the elements $1, s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{3}, \ldots, s_{1} s_{2} \cdots s_{r}$ yields a sequence of integers, beginning with 0 , in which successive numbers differ by at most one.

We require a stronger result to deduce the opposite inequality.
Theorem (Exchange principle). Let $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$ and $s_{i}=s_{\alpha_{i}}$ for the simple root $\alpha_{i} \in \Delta$. Assume $n(w)<r$. Then there exist indices $1 \leq i<j \leq r$ such that
(a) $\alpha_{i}=\left(s_{i+1} \cdots s_{j-1}\right) \alpha_{j}$.
(b) $s_{i+1} s_{i+2} \cdots s_{j}=s_{i} s_{i+1} \cdots s_{j-1}$.
(c) $w=s_{1} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{r}$ where for each ${ }^{\wedge}$ we omit the capped factor.

In other words, we can omit two factors from $s_{1} s_{2} \cdots s_{r}$ without changing the product.
Proof. Iterate part (a) of the lemma to deduce that there exists an index $j \leq r$ with $\left(s_{1} \cdots s_{j-1}\right) \alpha_{j}<0$. Since $\alpha_{j}>0$, there exists $i<j$ with $s_{i}\left(s_{i+1} \cdots s_{j-1}\right) \alpha_{j}<0$ while $\left(s_{i+1} \cdots s_{j-1}\right) \alpha_{j}>0$. Let $\alpha=$ $\left(s_{i+1} \cdots s_{j-1}\right) \alpha_{j} \in \Pi$. Since $s_{i} \alpha<0$, it must hold that $\alpha=\alpha_{i}$ since this is the only positive root which s_{i} makes negative. We thus obtain part (a).
Now set $\alpha=\alpha_{j}$ and $v=s_{i+1} \cdots s_{j-1}$ so that $v \alpha=\alpha_{i}$ by the first part. We then have $v s_{\alpha} v^{-1}=s_{v \alpha}=s_{i}$, so $v s_{j}=s_{i} v$. Replacing v by $s_{i+1} \cdots s_{j-1}$ gives part (b).

Part (c) follows by multiplying both sides of the identity in part (b) by $s_{1} \cdots s_{i-1}$ on the left and by $s_{j+1} \cdots s_{r}$ on the right.

Corollary. If $w \in W$ then $\ell(w)=n(w)$.
Proof. We already saw that $n(w) \leq \ell(w)$. This inequality cannot be strict since the exchange principle would then imply that we could write w as a product of $\ell(w)-2$ simple generators, a contradiction.

The proof of the theorem indicates an effective procedure for determining precisely which positive roots $w \in W$ makes negative. We call " $w=s_{1} s_{2} \cdots s_{r}$ " a reduced expression if each $s_{i} \in S$ and $\ell(w)=r$.

Proposition. Let $w \in W$. Suppose $w=s_{1} s_{2} \cdots s_{r}$ is a reduced expression. Let $\alpha_{i} \in \Delta$ be such that $s_{i}=s_{\alpha_{i}}$. Define $\beta_{r}=\alpha_{r}$ and $\beta_{i}=\left(s_{r} s_{r-1} \cdots s_{i+1}\right) \alpha_{i}$ for $i \in[r-1]$. Then $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$ are distinct positive roots and $\{\alpha \in \Pi: w \alpha \in-\Pi\}=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$.

Proof. Let $\beta \in \Pi$ be such that $w \beta<0$.
We can then find an index $i \leq r$ such that $\left(s_{i+1} \cdots s_{r}\right) \beta>0$ but $\left(s_{i} s_{i+1} \cdots s_{r}\right) \beta<0$. Let $\alpha=$ $s_{i+1} \cdots s_{r} \beta \in \Pi$. Since $s_{i} \alpha<0$, we must have $\alpha=\alpha_{i}$, so $\beta=s_{r} \cdots s_{i+1} \alpha_{i}=\beta_{i}$.

Thus $\{\alpha \in \Pi: w \alpha \in-\Pi\} \subset\left\{\beta_{1}, \ldots, \beta_{r}\right\}$. The containment is equality and the β_{i} 's are distinct since the first set has size r by assumption.

Next time: a presentation for W.

