1 Last time: length functions and the exchange principle

Recall our familiar setup:

1. V is a real vector space with a symmetric, positive definite, bilinear form $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$.
2. $\Phi \subset V$ is a root system.
3. $\Pi \subset \Phi$ is a positive system. We write $\alpha>0$ to mean $\alpha \in \Pi$.
4. $\Delta \subset \Pi$ is a simple system.

Let $S=\left\{s_{\alpha}: \alpha \in \Delta\right\}$ and $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$
Nontrivial facts: W is finite and generated by just S, and $(\alpha, \beta) \leq 0$ for all $\alpha \neq \beta$ in Δ.
From last time: the length of $w \in W$ (with respect to the choices of Δ, Π, and Φ) is the smallest integer $r \geq 0$ such that $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$. Denote this length as $\ell(w)$.

Proposition. If $w \in W$ then $\ell(w)=n(w)$, where $n(w)$ is the number of $\alpha \in \Pi$ with $w \alpha \notin \Pi$.
Theorem (Exchange principle). Let $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$. If $\ell(w)<r$ then there exist indices $1 \leq i<j \leq r$ such that
(a) $s_{i+1} s_{i+2} \cdots s_{j}=s_{i} s_{i+1} \cdots s_{j-1}$.
(b) $w=s_{1} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{r}$ where for each ${ }^{\wedge}$ we omit the capped factor.

Say that $w=s_{1} s_{2} \cdots s_{r}$ is a reduced expression for $w \in W$ if $s_{i} \in S$ and $r=\ell(w)$.
Corollary. If $w=s_{1} s_{2} \cdots s_{r}$ is not a reduced expression for w, then we can obtain one by deleting an even number of factors.

Corollary. Let $w=s_{1} s_{2} \cdots s_{r}$ where $s_{i} \in S$, and let $s \in S$.
(a) If $\ell(w s)<\ell(w)$ then there is an index $i \in\{1,2, \ldots, r\}$ with $w s=s_{1} \cdots \widehat{s}_{i} \cdots s_{r}$,
(b) If $\ell(w)=r$ then this index is unique.

Thus $\ell(w s)<\ell(w)$ if and only if w has a reduced expression ending in s.
Proof. Assume $r=\ell(w)>\ell(w s)$ and consider the expression $w s=s_{1} \cdots s_{r} s$. Since this is not reduced, we can omit two factors without changing the product. If neither of this factors is the right-most factor s, then by canceling this factor we could obtain an expression for w with $r-2$ factors, contradicting the fact that $\ell(w)=r$. So one of the omitted factors is s, meaning that we have $w s=s_{1} \cdots \widehat{s_{i}} \cdots s_{r}$ for some i. If there were another index j with $w s=s_{1} \cdots \widehat{s_{j}} \cdots s_{r}$ then it would follow that $w s=s_{1} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{r}$, contradicting the fact that $\ell(w s)=r-1$.

The argument to deduce the result when $\ell(w)<r$ is left as an exercise.

2 The longest element

Summarizing some of the properties we have recently seen:
Theorem. The following are equivalent for $w \in W$:
(a) $w=1$.
(b) $w \Pi=\Pi$.
(c) $w \Delta=\Delta$.
(d) $n(w)=0$
(e) $\ell(w)=0$.

We also proved in an earlier lecture:
Theorem. W acts transitively on the set of positive (respectively, simple) systems in Φ.
Corollary. For two positive (simple) systems $\Pi, \Pi^{\prime}\left(\Delta, \Delta^{\prime}\right)$ in Φ, there exists a unique $w \in W$ with $w \Pi=\Pi^{\prime}\left(w \Delta=\Delta^{\prime}\right)$.

If Π is a positive system, then by symmetry, $-\Pi$ is also a positive system (with respect to the opposite total order) in Φ. Combining this observation with the preceding theorems gives:

Corollary. There exists a unique element $w_{0} \in W$ with $w \Pi=-\Pi$. This is the longest element of W, since it is the unique element with $\ell\left(w_{0}\right)=|\Pi|=\frac{|\Phi|}{2}$.

Proposition. If holds that $\ell\left(s w_{0}\right)=\ell\left(w_{0} s\right)=\ell\left(w_{0}\right)-1$ for all $s \in S$.
Proof. Otherwise the length would increase, which is impossible.

Proposition. If $v \in W$ then $\ell\left(w_{0} v\right)=\ell\left(w_{0}\right)-\ell(v)$.
Proof. Keep multiplying v on the right by simple reflections increasing the length, while this is possible. The end result will be an element $w \in W$ with $w \alpha \in-\Pi$ for all $\alpha \in \Delta$, so $w \alpha \in-\Pi$ for all $\alpha \in \Pi$. Therefore $w=w_{0}$, and we can write $v u=w_{0}$ where u has length $\ell\left(w_{0}\right)-\ell(v)$. and it follows that $\ell\left(w_{0} v\right)=\ell\left(v^{-1} w_{0}\right)=\ell(u)=\ell\left(w_{0}\right)-\ell(v)$.

3 Presentations and Coxeter systems

Here is the main theorem of today, promised last time:
Theorem. Define $m(s, t)$ for $s, t \in S$ as the order of the product $s t$ in W, that is, the smallest integer $n \geq 1$ with $(s t)^{n}=1$. The reflection group W then has the presentation

$$
W=\left\langle s \in S:(s t)^{m(s, t)}=1 \text { for all } s, t \in S\right\rangle
$$

There always exists a surjective homomorphism from the group on the left to W; the nontrivial part of the theorem is the claim that this homomorphism is injective.

A consequence of this result is that if G is a group and $f: S \rightarrow G$ is any map, then f extends to a group homomorphism $W \rightarrow G$ if and only if $(f(s) f(t))^{m(s, t)}=1$ for all $s, t \in S$.
Since $s^{2}=1$ for $s \in S$, the relation $(s t)^{m(s, t)}=1$ is equivalent to

$$
\underbrace{\text { ststststs } \cdots}_{m(s, t) \text { factors }}=\underbrace{\text { tstststst } \cdots}_{m(s, t) \text { factors }}
$$

We call this a braid relation for W.

Proof. We argue informally that any relation

$$
\begin{equation*}
s_{1} \cdots s_{r}=1 \tag{1}
\end{equation*}
$$

which holds in W (where $s_{i} \in S$) can be deduced from the braid relations. (This amounts to showing that the kernel of the natural homomorphism from our finitely presented group to W is trivial.)

Note that r must be even in (1) since det $s_{i}=-1$. If $r=2$, then $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}=s_{2}$, so (1) is the given relation $s_{1} s_{1}=1$.

We proceed by induction on $r=2 q$, with $q>1$. Throughout, we make use of the fact that we can always cancel any factors we want to rewrite various expression, since such cancellations follow from the relations $s^{2}=1$. For example, (1) implies that

$$
s_{1} \cdots s_{q+1}=s_{r} \cdots s_{q+2}
$$

The left side cannot be reduced so by the exchange condition there are indices $1 \leq i<j \leq q+1$ such that $s_{i+1} \cdots s_{j}=s_{i} \cdots s_{j-1}$ holds in W, giving

$$
\begin{equation*}
s_{i} s_{i+1} \cdots s_{j-1} s_{j} s_{j-1} \cdots s_{i+1}=1 \tag{2}
\end{equation*}
$$

If the left side of this relation has fewer than r factors, then we may assume that the relation is implied by the braid relations, and obtain by induction that

$$
s_{1} \cdots s_{r}=s_{1} \cdots s_{i}\left(s_{i} \cdots s_{j-1}\right) s_{j+1} \cdots s_{r}=s_{1} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{r}=1
$$

is implied by the braid relations.
This conclusion fails only if (2) has r factors, which holds if $i=1$ and $j=q+1$ in which case (2) is

$$
\begin{equation*}
s_{2} \cdots s_{q+1}=s_{1} \cdots s_{q} \tag{3}
\end{equation*}
$$

Suppose we instead apply the above steps to try to deduce the relation

$$
s_{2} \cdots s_{r} s_{1}=1
$$

which is equivalent to (1), from the braid relations By the same argument, we will be successful unless

$$
s_{3} \cdots s_{q+2}=s_{2} \cdots s_{q+1}
$$

Rewrite this last relation as

$$
s_{3}\left(s_{2} s_{3} \cdots s_{q+1}\right)\left(s_{q+2} s_{q+1} \cdots s_{r}\right)=1
$$

Applying the same argument again will success unless

$$
s_{2} s_{3} \cdots s_{q+1}=s_{3} s_{2} s_{3} \cdots s_{q}
$$

Substituting (3) into this equation and canceling factors then gives $s_{1}=s_{3}$.
Applying this technique to all of the equivalent relations

$$
\begin{aligned}
s_{1} \cdots s_{r} & =1 \\
s_{2} \cdots s_{r} s_{1} & =1 \\
s_{3} \cdots s_{r} s_{1} s_{2} & =1
\end{aligned}
$$

and so forth, we deduce that either we can generate one (therefore all) of these relations from braids, or

$$
s_{1}=s_{3}=s_{5}=\cdots=s_{r-1} \quad \text { and } \quad s_{2}=s_{4}=s_{6}=\cdots=s_{r}
$$

in which case (1) holds automatically since it is necessarily one of the given relations.
This result at last brings us to the definition of a Coxeter system.
Definition. A Coxeter system is a pair (W, S) where W is a group and $S \subset W$ is a set of elements of order two which generate W, such that

$$
W=\left\langle s \in S:(s t)^{m(s, t)}=1 \text { for all } s, t \in S\right\rangle
$$

where $m(s, t)$ denotes the order of $s t \in W$.
(This order may be infinite, in which case the relation $(s t)^{\infty}=1$ is ignored in the presentation.)
A Coxeter group is a group which occurs as the group W in some Coxeter system.
Corollary. Each finite reflection group is a Coxeter group.

