MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 5

1 Last time: length functions and the exchange principle

Recall our familiar setup:
1. V is a real vector space with a symmetric, positive definite, bilinear form (-,-) : V x V — R.
2. ® C V is a root system.
3. II C @ is a positive system. We write o > 0 to mean « € II.
4. A C1II is a simple system.
Let S={sq:a€ A}t and W = (sq : @ € D)
Nontrivial facts: W is finite and generated by just S, and (o, 8) < 0 for all o # 3 in A.
From last time: the length of w € W (with respect to the choices of A, II, and ®) is the smallest integer
r > 0 such that w = s1s2- -+ s, where each s; € S. Denote this length as ¢(w).
Proposition. If w € W then £(w) = n(w), where n(w) is the number of « € II with wa ¢ II.
Theorem (Exchange principle). Let w = s185--- s, where each s; € S. If f(w) < r then there exist
indices 1 <1 < j < r such that
() Sit1Si42 "85 = SiSiq1 - - Sj—1.
(b) w=s1---§---§;---s, where for each ~ we omit the capped factor.
Say that w = s182- - s, is a reduced expression for w € W if s; € S and r = ¢(w).
Corollary. If w = s185 -+ s, is not a reduced expression for w, then we can obtain one by deleting an
even number of factors.
Corollary. Let w = s189 -5, where s; € S, and let s € S.
(a) If L(ws) < £(w) then there is an index i € {1,2,...,r} with ws = s1--- 8-+ - Sy,
(b) If £(w) = r then this index is unique.
Thus ¢(ws) < £(w) if and only if w has a reduced expression ending in s.
Proof. Assume r = {(w) > £(ws) and consider the expression ws = s1 - - - s,.s. Since this is not reduced,
we can omit two factors without changing the product. If neither of this factors is the right-most factor s,
then by canceling this factor we could obtain an expression for w with r» — 2 factors, contradicting the fact
that £(w) = r. So one of the omitted factors is s, meaning that we have ws = s1---§; - - - s, for some 7. If

there were another index j with ws = s1---§;---s, then it would follow that ws = s1---8---5;---s,,
contradicting the fact that f(ws) =r — 1.

The argument to deduce the result when £(w) < r is left as an exercise. O
2 The longest element

Summarizing some of the properties we have recently seen:

Theorem. The following are equivalent for w € W:

(a) w=1.
(b) wll = IL.
(c) wA =A.
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(d) n(w) =0
(e) £(w) =0.
We also proved in an earlier lecture:

Theorem. W acts transitively on the set of positive (respectively, simple) systems in ®.

Corollary. For two positive (simple) systems II,II' (A, A’) in @, there exists a unique w € W with
wll =1I" (wA = A).

If 1 is a positive system, then by symmetry, —II is also a positive system (with respect to the opposite
total order) in ®. Combining this observation with the preceding theorems gives:

Corollary. There exists a unique element wy € W with wlIl = —II. This is the longest element of W,
since it is the unique element with ¢(wg) = |II| = I%\_

Proposition. If holds that ¢(swy) = £(wps) = £(wg) — 1 for all s € S.

Proof. Otherwise the length would increase, which is impossible. O

Proposition. If v € W then £(wov) = £(wg) — £(v).

Proof. Keep multiplying v on the right by simple reflections increasing the length, while this is possible.
The end result will be an element w € W with wa € —II for all & € A, so wa € —II for all o € II.
Therefore w = wp, and we can write vu = wg where u has length ¢(wg) — ¢(v). and it follows that
(wov) = L(v" wg) = L(u) = £(wo) — £(v). O

3 Presentations and Coxeter systems

Here is the main theorem of today, promised last time:

Theorem. Define m(s,t) for s,t € S as the order of the product st in W, that is, the smallest integer
n > 1 with (st)” = 1. The reflection group W then has the presentation

W={(seS:(st)y">) =1forall s,t ).

There always exists a surjective homomorphism from the group on the left to W; the nontrivial part of
the theorem is the claim that this homomorphism is injective.

A consequence of this result is that if G is a group and f : S — G is any map, then f extends to a group
homomorphism W — G if and only if (f(s)f(t))™** =1 for all 5,¢ € S.

Since s2 = 1 for s € S, the relation (st)™(*!) =1 is equivalent to

ststststs--- = tstststst---.

m(s, t) factors m(s,t) factors

We call this a braid relation for W.
Proof. We argue informally that any relation
S1---8- =1 (1)

which holds in W (where s; € S) can be deduced from the braid relations. (This amounts to showing
that the kernel of the natural homomorphism from our finitely presented group to W is trivial.)
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Note that » must be even in (1) since det s; = —1. If r = 2, then s1s2 = 1 implies that s; = 52_1 = 89, SO
(1) is the given relation s1s1 = 1.

We proceed by induction on r = 2¢, with ¢ > 1. Throughout, we make use of the fact that we can
always cancel any factors we want to rewrite various expression, since such cancellations follow from the
relations s = 1. For example, (1) implies that

81"'5q+1:5r"'5q+2~

The left side cannot be reduced so by the exchange condition there are indices 1 < ¢ < j < g+ 1 such
that s;41---5; = s;---s;_1 holds in W, giving

8iSit1- " 8j—18j8j—1- - Si+1 = L. (2)
If the left side of this relation has fewer than r factors, then we may assume that the relation is implied
by the braid relations, and obtain by induction that

Sy Sp =81 8i(Si e Sj_1)Sj41 Sy =815y 58y =1
is implied by the braid relations.
This conclusion fails only if (2) has r factors, which holds if ¢ = 1 and j = ¢ + 1 in which case (2) is
SotrtSqpl =510+ Sq. (3)
Suppose we instead apply the above steps to try to deduce the relation
So++-8.81 =1
which is equivalent to (1), from the braid relations By the same argument, we will be successful unless
53 Sg42 =82 Sqil.

Rewrite this last relation as
s3(s253 - 5q+1)(3q+23q+1 esp) =1

Applying the same argument again will success unless
5283+ 8q41 = 535253 " Sq.
Substituting (3) into this equation and canceling factors then gives s; = s3.
Applying this technique to all of the equivalent relations
S1 8 =1
Sgr--8p81 =1
S3++-8;.8182 = 1
and so forth, we deduce that either we can generate one (therefore all) of these relations from braids, or
§1 =83 =85 =" = Sp_1 and Sg =84 =85 == S,

in which case (1) holds automatically since it is necessarily one of the given relations. O
This result at last brings us to the definition of a Cozeter system.

Definition. A Cozeter system is a pair (W, S) where W is a group and S C W is a set of elements of
order two which generate W, such that

W={(seS:(st)y™>) =1 forall s,t € S)
where m(s,t) denotes the order of st € W.
(This order may be infinite, in which case the relation (st)* =1 is ignored in the presentation.)

A Cozeter group is a group which occurs as the group W in some Coxeter system.

Corollary. Each finite reflection group is a Coxeter group.
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