
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 5

1 Last time: length functions and the exchange principle

Recall our familiar setup:

1. V is a real vector space with a symmetric, positive definite, bilinear form (·, ·) : V × V → R.

2. Φ ⊂ V is a root system.

3. Π ⊂ Φ is a positive system. We write α > 0 to mean α ∈ Π.

4. ∆ ⊂ Π is a simple system.

Let S = {sα : α ∈ ∆} and W = 〈sα : α ∈ Φ〉

Nontrivial facts: W is finite and generated by just S, and (α, β) ≤ 0 for all α 6= β in ∆.

From last time: the length of w ∈W (with respect to the choices of ∆, Π, and Φ) is the smallest integer
r ≥ 0 such that w = s1s2 · · · sr where each si ∈ S. Denote this length as `(w).

Proposition. If w ∈W then `(w) = n(w), where n(w) is the number of α ∈ Π with wα /∈ Π.

Theorem (Exchange principle). Let w = s1s2 · · · sr where each si ∈ S. If `(w) < r then there exist
indices 1 ≤ i < j ≤ r such that

(a) si+1si+2 · · · sj = sisi+1 · · · sj−1.

(b) w = s1 · · · ŝi · · · ŝj · · · sr where for each ̂ we omit the capped factor.

Say that w = s1s2 · · · sr is a reduced expression for w ∈W if si ∈ S and r = `(w).

Corollary. If w = s1s2 · · · sr is not a reduced expression for w, then we can obtain one by deleting an
even number of factors.

Corollary. Let w = s1s2 · · · sr where si ∈ S, and let s ∈ S.

(a) If `(ws) < `(w) then there is an index i ∈ {1, 2, . . . , r} with ws = s1 · · · ŝi · · · sr,

(b) If `(w) = r then this index is unique.

Thus `(ws) < `(w) if and only if w has a reduced expression ending in s.

Proof. Assume r = `(w) > `(ws) and consider the expression ws = s1 · · · srs. Since this is not reduced,
we can omit two factors without changing the product. If neither of this factors is the right-most factor s,
then by canceling this factor we could obtain an expression for w with r−2 factors, contradicting the fact
that `(w) = r. So one of the omitted factors is s, meaning that we have ws = s1 · · · ŝi · · · sr for some i. If
there were another index j with ws = s1 · · · ŝj · · · sr then it would follow that ws = s1 · · · ŝi · · · ŝj · · · sr,
contradicting the fact that `(ws) = r − 1.

The argument to deduce the result when `(w) < r is left as an exercise.

2 The longest element

Summarizing some of the properties we have recently seen:

Theorem. The following are equivalent for w ∈W :

(a) w = 1.

(b) wΠ = Π.

(c) w∆ = ∆.
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(d) n(w) = 0

(e) `(w) = 0.

We also proved in an earlier lecture:

Theorem. W acts transitively on the set of positive (respectively, simple) systems in Φ.

Corollary. For two positive (simple) systems Π,Π′ (∆,∆′) in Φ, there exists a unique w ∈ W with
wΠ = Π′ (w∆ = ∆′).

If Π is a positive system, then by symmetry, −Π is also a positive system (with respect to the opposite
total order) in Φ. Combining this observation with the preceding theorems gives:

Corollary. There exists a unique element w0 ∈ W with wΠ = −Π. This is the longest element of W ,

since it is the unique element with `(w0) = |Π| = |Φ|
2 .

Proposition. If holds that `(sw0) = `(w0s) = `(w0)− 1 for all s ∈ S.

Proof. Otherwise the length would increase, which is impossible.

Proposition. If v ∈W then `(w0v) = `(w0)− `(v).

Proof. Keep multiplying v on the right by simple reflections increasing the length, while this is possible.
The end result will be an element w ∈ W with wα ∈ −Π for all α ∈ ∆, so wα ∈ −Π for all α ∈ Π.
Therefore w = w0, and we can write vu = w0 where u has length `(w0) − `(v). and it follows that
`(w0v) = `(v−1w0) = `(u) = `(w0)− `(v).

3 Presentations and Coxeter systems

Here is the main theorem of today, promised last time:

Theorem. Define m(s, t) for s, t ∈ S as the order of the product st in W , that is, the smallest integer
n ≥ 1 with (st)n = 1. The reflection group W then has the presentation

W = 〈s ∈ S : (st)m(s,t) = 1 for all s, t ∈ S〉.

There always exists a surjective homomorphism from the group on the left to W ; the nontrivial part of
the theorem is the claim that this homomorphism is injective.

A consequence of this result is that if G is a group and f : S → G is any map, then f extends to a group
homomorphism W → G if and only if (f(s)f(t))m(s,t) = 1 for all s, t ∈ S.

Since s2 = 1 for s ∈ S, the relation (st)m(s,t) = 1 is equivalent to

ststststs · · ·︸ ︷︷ ︸
m(s, t) factors

= tstststst · · ·︸ ︷︷ ︸
m(s, t) factors

.

We call this a braid relation for W .

Proof. We argue informally that any relation

s1 · · · sr = 1 (1)

which holds in W (where si ∈ S) can be deduced from the braid relations. (This amounts to showing
that the kernel of the natural homomorphism from our finitely presented group to W is trivial.)
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Note that r must be even in (1) since det si = −1. If r = 2, then s1s2 = 1 implies that s1 = s−1
2 = s2, so

(1) is the given relation s1s1 = 1.

We proceed by induction on r = 2q, with q > 1. Throughout, we make use of the fact that we can
always cancel any factors we want to rewrite various expression, since such cancellations follow from the
relations s2 = 1. For example, (1) implies that

s1 · · · sq+1 = sr · · · sq+2.

The left side cannot be reduced so by the exchange condition there are indices 1 ≤ i < j ≤ q + 1 such
that si+1 · · · sj = si · · · sj−1 holds in W , giving

sisi+1 · · · sj−1sjsj−1 · · · si+1 = 1. (2)

If the left side of this relation has fewer than r factors, then we may assume that the relation is implied
by the braid relations, and obtain by induction that

s1 · · · sr = s1 · · · si(si · · · sj−1)sj+1 · · · sr = s1 · · · ŝi · · · ŝj · · · sr = 1

is implied by the braid relations.

This conclusion fails only if (2) has r factors, which holds if i = 1 and j = q + 1 in which case (2) is

s2 · · · sq+1 = s1 · · · sq. (3)

Suppose we instead apply the above steps to try to deduce the relation

s2 · · · srs1 = 1

which is equivalent to (1), from the braid relations By the same argument, we will be successful unless

s3 · · · sq+2 = s2 · · · sq+1.

Rewrite this last relation as
s3(s2s3 · · · sq+1)(sq+2sq+1 · · · sr) = 1.

Applying the same argument again will success unless

s2s3 · · · sq+1 = s3s2s3 · · · sq.

Substituting (3) into this equation and canceling factors then gives s1 = s3.

Applying this technique to all of the equivalent relations

s1 · · · sr = 1

s2 · · · srs1 = 1

s3 · · · srs1s2 = 1

and so forth, we deduce that either we can generate one (therefore all) of these relations from braids, or

s1 = s3 = s5 = · · · = sr−1 and s2 = s4 = s6 = · · · = sr

in which case (1) holds automatically since it is necessarily one of the given relations.

This result at last brings us to the definition of a Coxeter system.

Definition. A Coxeter system is a pair (W,S) where W is a group and S ⊂ W is a set of elements of
order two which generate W , such that

W = 〈s ∈ S : (st)m(s,t) = 1 for all s, t ∈ S〉

where m(s, t) denotes the order of st ∈W .

(This order may be infinite, in which case the relation (st)∞ = 1 is ignored in the presentation.)

A Coxeter group is a group which occurs as the group W in some Coxeter system.

Corollary. Each finite reflection group is a Coxeter group.
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