1 Last time: reflection groups as Coxeter groups

Recall our familiar setup:

1. V is a real vector space with a symmetric, positive definite, bilinear form $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$.
2. $\Phi \subset V$ is a root system.
3. $\Pi \subset \Phi$ is a positive system. We write $\alpha>0$ to mean $\alpha \in \Pi$.
4. $\Delta \subset \Pi$ is a simple system.

Let $S=\left\{s_{\alpha}: \alpha \in \Delta\right\}$ and $W=\left\langle s_{\alpha}: \alpha \in \Phi\right\rangle$
The length of $w \in W$ (with respect to the choices of Δ, Π, and Φ) is the smallest integer $r \geq 0$ such that $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$. Denote this length as $\ell(w)$. This is also the number of positive roots $\alpha \in \Pi$ such that $w \alpha$ is not positive.
The exchange principle is the fact that if $w=s_{1} s_{2} \cdots s_{r}$ where each $s_{i} \in S$ and $\ell(w)<r$, then we can delete exactly two factors s_{i} and s_{j} without changing the product.

Define $m(s, t)$ for $s, t \in S$ as the smallest integer $n>0$ such that $(s t)^{n}=1$, i.e., the order of $s t$ in W.
Theorem. The reflection group W then has the presentation

$$
W=\left\langle s \in S:(s t)^{m(s, t)}=1 \text { for all } s, t \in S\right\rangle
$$

Therefore, if G is a group and $f: S \rightarrow G$ is any map, then f extends to a group homomorphism $W \rightarrow G$ if and only if $(f(s) f(t))^{m(s, t)}=1$ for all $s, t \in S$.
The theorem shows that every finite reflection group is a Coxeter group, which is defined as follows:
Definition. A Coxeter group is a group W generated by a set S with a presentation of the form

$$
W=\left\langle s \in S:(s t)^{m(s, t)}=1 \text { for } s, t \in S \text { with } m(s, t) \neq \infty\right\rangle
$$

where $m: S \times S \rightarrow\{1,2,3, \ldots\} \cup\{\infty\}$ is a map with $m(s, t)=m(t, s)$ and $m(s, s)=1$ for all $s, t \in S$.
The pair (W, S) is a Coxeter system.

2 Coxeter graphs

A graph $\mathcal{G}=(V, E)$ is a pair consisting of a set of vertices V, and a set E of subsets of V of size two, which we call edges. A weighted graph is a graph $\mathcal{G}=(V, E)$ plus a map which assigns a weight (e.g., a number, a color, etc.) to each edge. All of graphs today will be weighted graphs with edge weights given by elements of $\{3,4,5, \ldots\} \cup\{\infty\}$.
A Coxeter system (W, S) may be encoded by its Coxeter graph (which we'll also sometimes call the Coxeter diagram) which is defined as the weighted graph with vertex set S and with an edge labeled by $m(s, t)$ from s to t whenever $s, t \in S$ are such that $m(s, t)>2$.

For example:

$$
a \stackrel{3}{-} b \frac{4}{} c
$$

is the Coxeter graph of $W=\left\langle a, b, c: a^{2}=b^{2}=c^{2}=(a b)^{3}=(b c)^{4}=(a c)^{2}=1\right\rangle$. By convention, people often omit any edge weights equal to 3 from these diagrams. An example using this convention:

is the graph of $W=\left\langle a, b, c, d: a^{2}=b^{2}=c^{2}=d^{2}=(a d)^{2}=(b c)^{2}=(a b)^{3}=(b d)^{3}=(c d)^{3}=(a c)^{3}\right\rangle$.

Example (Symmetric groups). Let $\Phi=\left\{e_{i}-e_{j}: i \neq j\right\} \subset \mathbb{R}^{n}$ and $\Delta=\left\{e_{i}-e_{i+1}: 1 \leq i<n\right\}$.
Recall that $W=\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle \cong S_{n}$ for $s_{i}=s_{e_{i}-e_{i+1}}$ since $s_{i} \mapsto(i, i+1)$ extends to an isomorphism.
Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$. For $s_{i}, s_{j} \in S$, we then have:

- $m\left(s_{i}, s_{j}\right)=$ order of 1 if $i=j$.
- $m\left(s_{i}, s_{j}\right)=$ order of $(i, i+1, i+2)$ or $(i, i+2, i+1)$ if $|i-j|=1$.
- $m\left(s_{i}, s_{j}\right)=$ order of $(i, i+1)(j, j+1)$ if $|i-j|>1$.

Thus $m\left(s_{i}, s_{j}\right)$ is 1,2 or 3 according to whether $|i-j|$ is 0,1 , or ≥ 2.
It follows that the Coxeter graph of (W, S) is

$$
s_{1}-s_{2}-\ldots-s_{n-1} .
$$

Remember that the unlabeled edges are secretly labeled by 3 's.
Example (Dihedral groups). Fix $m \geq 3$.
Let $\Phi=\left\{\left[\begin{array}{c}\cos (i \theta) \\ \sin (i \theta)\end{array}\right]: i=0,1, \ldots, 2 m\right\} \subset \mathbb{R}^{2}$ where $\theta=\pi / m$.
This is a root system. For positive roots, we can take the vectors $\left[\begin{array}{l}x \\ y\end{array}\right] \in \Phi$ with $x>0$ or $x=0, y>0$.
The corresponding simple system $\Delta=\{\alpha, \beta\}$ then must consist of the two positive roots making the largest angle, since the \mathbb{R}^{+}-span of any two roots stays inside the cone they determine.

The group $W=\left\langle s_{\alpha}, s_{\beta}\right\rangle$ is a finite reflection group of order $2 m$, so it has a presentation of the form

$$
W=\left\langle s_{\alpha}, s_{\beta}: s_{\alpha}^{2}=s_{\beta}^{2}=\left(s_{\alpha} s_{\beta}\right)^{?}=1\right\rangle .
$$

The question mark? stands in for the order of $s_{\alpha} s_{\beta}$. To compute this, either note that $s_{\alpha} s_{\beta}$ is a rotation by angle $2 \pi / m$, or try listing the distinct elements of W and note that $|W|=2 m$.

In this case, the Coxeter graph of (W, S) is

$$
s_{\alpha} \frac{m}{-} s_{\beta}
$$

If we set $m=\infty$ in this diagram then the corresponding Coxeter group W is the infinite dihedral group. Any graph with edges labeled by elements of $\{3,4,5, \ldots\} \cup\{\infty\}$ is the graph of a Coxeter system.

Remark. Any (weighted graph) automorphism of a Coxeter diagram extends to an automorphism of the corresponding Coxeter group. (An automorphism of a graph is a permutation of its vertices which preserves edges and edge weights.) This is because any graph automorphism provides us with a map $S \rightarrow S$ which preserves all the required relations.

For example, the graph automorphism

$$
s_{1}-s_{2}-\ldots-s_{n-1} \quad \mapsto \quad s_{n}-s_{n-1}-\ldots-s_{1}
$$

corresponds to the inner automorphism of S_{n} given by $\sigma \mapsto w_{0} \sigma w_{0}$ for $w_{0}=n \cdots 321$.

3 Parabolic subgroups

When the Coxeter graph of a finite reflection group is not connected, each of its connected components is the Coxeter graph of a smaller Coxeter group. As one might hope, each of these Coxeter groups is itself a reflection group. To be precise:

Proposition. Fix a simple system Δ in a root system Φ in a real vector space V (with a bilinear form with the usual properties). Let $S=\left\{s_{\alpha}: \alpha \in \Delta\right\}$ and suppose $J \subset S$. Define

$$
\Delta_{J}=\left\{\alpha \in \Delta: s_{\alpha} \in J\right\} \quad \text { and } \quad V_{J}=\mathbb{R}-\operatorname{span}\left\{\alpha \in \Delta_{J}\right\} \quad \text { and } \quad \Phi_{J}=\Phi \cap V_{J}
$$

(a) $\Phi_{J} \subset V$ is a root system with simple system Δ_{J} and corresponding reflection group $W_{J}=\langle s \in J\rangle$.
(b) The length function of W_{J} relative to Δ_{J} is the restriction of the length function of W.
(c) Define $W^{J}=\{w \in W: \ell(w s)>\ell(w)$ for all $s \in J\}$.

For each $w \in W$, there are unique elements $u \in W^{J}$ and $v \in W_{J}$ such that $w=u v$.
It moreover holds that $\ell(w)=\ell(u)+\ell(v)$.
Proof. Part (a) is evident from the axioms of a root system.
For part (b), let Φ^{+}be the positive system in Φ containing Δ, and suppose $\alpha \in \Phi^{+} \backslash \Phi_{J}$. Then α involves some simple root $\gamma \notin \Delta_{J}$, and it follows that $s_{\beta} \alpha$ still involves γ with a positive coefficient for all $\beta \in \Delta_{J}$. We deduce that $s_{\beta} \alpha>0$ for $\beta \in \Delta_{J}$, so $w \alpha>0$ for $w \in W_{J}$. Thus the roots in Φ^{+}sent by $w \in W_{J}$ to negative roots are precisely the roots in Φ_{J}^{+}sent by w to negative roots. It follows that the length function of W_{J} coincides with the restriction of the length function of W.

For part (c), fix $w \in W$ and choose an element $u \in w W_{J}$ of smallest possible length. Define $v \in W_{J}$ so that $w=u v$. We must have $u \in W^{J}$ since $u s \in w W_{J}$ for all $s \in J$. To show that $\ell(w)=\ell(u)+\ell(v)$ we use the deletion condition. Suppose $u=s_{1} \cdots s_{q}$ and $v=t_{1} \cdots t_{r}$ are reduced expressions. If $\ell(w)<q+r$ then we can omit two factors from $s_{1} \cdots s_{q} t_{1} \cdots t_{r}$ and still get w. Omitting any s_{i} would lead to a shorter coset representative in $w W_{J}$, while omitting two factors from $t_{1} \cdots t_{r}$ would contradict $\ell(v)=r$. Conclude that $\ell(w)=\ell(u)+\ell(v)$.

Our argument applies to any $w \in W$, so it must hold that u is the unique shortest element in $w W_{J}$. It remains to show that $W^{J} \cap w W_{J}=\{u\}$. Suppose $u^{\prime} \in W^{J} \cap w W_{J}$. Then $u^{\prime}=u v^{\prime}$ for some $v^{\prime} \in W_{J}$. If $v^{\prime} \neq 1$ then for any $s \in J$ with $\ell\left(v^{\prime} s\right)<\ell\left(v^{\prime}\right)$ we would have $\ell\left(u^{\prime} s=\ell\left(u v^{\prime} s\right)=\ell(u)+\ell\left(v^{\prime} s\right)<\ell\left(u^{\prime}\right)\right.$, a contradiction. Hence $v^{\prime}=1$ so $u=u^{\prime}$.

Elements of the set W^{J} are minimal (left) coset representatives.
We refer to W_{J} as a (standard) parabolic subgroup.
The proposition shows that $\left(W_{J}, J\right)$ is a Coxeter system.
A Coxeter system (W, S) is irreducible if its Coxeter graph is connected, meaning that there is a path following the edges of the graph between any two vertices. To classify the finite reflection groups, it suffices to classify the irreducible ones:

Proposition. Let (W, S) be a finite reflection group with Coxeter graph Γ. Let $\Gamma_{1}, \ldots, \Gamma_{r}$ be the connected components of Γ, and let S_{i} be the set of vertices in Γ_{i}.
Then $W=W_{S_{1}} \times \cdots \times W_{S_{r}}$ and each $\left(W_{S_{i}}, S_{i}\right)$ is irreducible.
Proof. We proceed by induction on r. Since the elements of S_{i} commute with the elements of S_{j} for $i \neq j$, it is clear that the indicated parabolic subgroups centralize each other, so each is normal.
The product of these groups contains S so is all of W. By induction $W_{S \backslash S_{r}}=W_{S_{1}} \times \cdots \times W_{S_{r-1}}$. It remains to show the indicated subgroups are disjoint. This will derive from the following lemma:

Lemma. If $I, J \subset S$ and $I \cap J=\varnothing$, then $W_{I} \cap W_{J}=\{1\}$.

Proof. If $w \in W_{I}$ then $w u=u$ for all $u \in V_{I}^{\perp}$ where

$$
V_{I}^{\perp}=\left\{u \in V:(u, v)=0 \text { for all } v \in V_{I}\right\}
$$

since this clearly holds when $w=s_{\alpha} \in I$. By symmetry if $w \in W_{I} \cap W_{J}$ then $w u=u$ for all $u \in V_{I}^{\perp}+V_{J}^{\perp}$. But it is an exercise in linear algebra to check that

$$
V_{I}^{\perp}+V_{J}^{\perp}=\left(V_{I} \cap V_{J}\right)^{\perp}=\left(V_{I \cap J}\right)^{\perp}=0^{\perp}=V
$$

so if $w \in W_{I} \cap W_{J}$ then $w=1$.

Next time we will sketch the classification of finite reflection groups, and then start the general theory of Coxeter systems.

