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1 Last time: reflection groups as Coxeter groups

Recall our familiar setup:

1. V is a real vector space with a symmetric, positive definite, bilinear form (·, ·) : V × V → R.

2. Φ ⊂ V is a root system.

3. Π ⊂ Φ is a positive system. We write α > 0 to mean α ∈ Π.

4. ∆ ⊂ Π is a simple system.

Let S = {sα : α ∈ ∆} and W = 〈sα : α ∈ Φ〉

The length of w ∈W (with respect to the choices of ∆, Π, and Φ) is the smallest integer r ≥ 0 such that
w = s1s2 · · · sr where each si ∈ S. Denote this length as `(w). This is also the number of positive roots
α ∈ Π such that wα is not positive.

The exchange principle is the fact that if w = s1s2 · · · sr where each si ∈ S and `(w) < r, then we can
delete exactly two factors si and sj without changing the product.

Define m(s, t) for s, t ∈ S as the smallest integer n > 0 such that (st)n = 1, i.e., the order of st in W .

Theorem. The reflection group W then has the presentation

W = 〈s ∈ S : (st)m(s,t) = 1 for all s, t ∈ S〉.

Therefore, if G is a group and f : S → G is any map, then f extends to a group homomorphism W → G
if and only if (f(s)f(t))m(s,t) = 1 for all s, t ∈ S.

The theorem shows that every finite reflection group is a Coxeter group, which is defined as follows:

Definition. A Coxeter group is a group W generated by a set S with a presentation of the form

W = 〈s ∈ S : (st)m(s,t) = 1 for s, t ∈ S with m(s, t) 6=∞〉

where m : S × S → {1, 2, 3, . . . } ∪ {∞} is a map with m(s, t) = m(t, s) and m(s, s) = 1 for all s, t ∈ S.

The pair (W,S) is a Coxeter system.

2 Coxeter graphs

A graph G = (V,E) is a pair consisting of a set of vertices V , and a set E of subsets of V of size two,
which we call edges. A weighted graph is a graph G = (V,E) plus a map which assigns a weight (e.g., a
number, a color, etc.) to each edge. All of graphs today will be weighted graphs with edge weights given
by elements of {3, 4, 5, . . . } ∪ {∞}.

A Coxeter system (W,S) may be encoded by its Coxeter graph (which we’ll also sometimes call the
Coxeter diagram) which is defined as the weighted graph with vertex set S and with an edge labeled by
m(s, t) from s to t whenever s, t ∈ S are such that m(s, t) > 2.

For example:

a
3

— b
4

— c

is the Coxeter graph of W = 〈a, b, c : a2 = b2 = c2 = (ab)3 = (bc)4 = (ac)2 = 1〉. By convention, people
often omit any edge weights equal to 3 from these diagrams. An example using this convention:

a — b
| |
c — d

is the graph of W = 〈a, b, c, d : a2 = b2 = c2 = d2 = (ad)2 = (bc)2 = (ab)3 = (bd)3 = (cd)3 = (ac)3〉.
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Example (Symmetric groups). Let Φ = {ei − ej : i 6= j} ⊂ Rn and ∆ = {ei − ei+1 : 1 ≤ i < n}.

Recall that W = 〈s1, s2, . . . , sn−1〉 ∼= Sn for si = sei−ei+1
since si 7→ (i, i+ 1) extends to an isomorphism.

Let S = {s1, s2, . . . , sn−1〉. For si, sj ∈ S, we then have:

• m(si, sj) = order of 1 if i = j.

• m(si, sj) = order of (i, i+ 1, i+ 2) or (i, i+ 2, i+ 1) if |i− j| = 1.

• m(si, sj) = order of (i, i+ 1)(j, j + 1) if |i− j| > 1.

Thus m(si, sj) is 1, 2 or 3 according to whether |i− j| is 0, 1, or ≥ 2.

It follows that the Coxeter graph of (W,S) is

s1 — s2 — . . . — sn−1.

Remember that the unlabeled edges are secretly labeled by 3’s.

Example (Dihedral groups). Fix m ≥ 3.

Let Φ =

{[
cos(iθ)
sin(iθ)

]
: i = 0, 1, . . . , 2m

}
⊂ R2 where θ = π/m.

This is a root system. For positive roots, we can take the vectors

[
x
y

]
∈ Φ with x > 0 or x = 0, y > 0.

The corresponding simple system ∆ = {α, β} then must consist of the two positive roots making the
largest angle, since the R+-span of any two roots stays inside the cone they determine.

The group W = 〈sα, sβ〉 is a finite reflection group of order 2m, so it has a presentation of the form

W = 〈sα, sβ : s2α = s2β = (sαsβ)? = 1〉.

The question mark ? stands in for the order of sαsβ . To compute this, either note that sαsβ is a rotation
by angle 2π/m, or try listing the distinct elements of W and note that |W | = 2m.

In this case, the Coxeter graph of (W,S) is

sα
m
— sβ .

If we set m =∞ in this diagram then the corresponding Coxeter group W is the infinite dihedral group.

Any graph with edges labeled by elements of {3, 4, 5, . . . } ∪ {∞} is the graph of a Coxeter system.

Remark. Any (weighted graph) automorphism of a Coxeter diagram extends to an automorphism of
the corresponding Coxeter group. (An automorphism of a graph is a permutation of its vertices which
preserves edges and edge weights.) This is because any graph automorphism provides us with a map
S → S which preserves all the required relations.

For example, the graph automorphism

s1 — s2 — . . . — sn−1 7→ sn — sn−1 — . . . — s1

corresponds to the inner automorphism of Sn given by σ 7→ w0σw0 for w0 = n · · · 321.

3 Parabolic subgroups

When the Coxeter graph of a finite reflection group is not connected, each of its connected components is
the Coxeter graph of a smaller Coxeter group. As one might hope, each of these Coxeter groups is itself
a reflection group. To be precise:
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Proposition. Fix a simple system ∆ in a root system Φ in a real vector space V (with a bilinear form
with the usual properties). Let S = {sα : α ∈ ∆} and suppose J ⊂ S. Define

∆J = {α ∈ ∆ : sα ∈ J} and VJ = R-span{α ∈ ∆J} and ΦJ = Φ ∩ VJ .

(a) ΦJ ⊂ V is a root system with simple system ∆J and corresponding reflection group WJ = 〈s ∈ J〉.

(b) The length function of WJ relative to ∆J is the restriction of the length function of W .

(c) Define W J = {w ∈W : `(ws) > `(w) for all s ∈ J}.

For each w ∈W , there are unique elements u ∈W J and v ∈WJ such that w = uv.

It moreover holds that `(w) = `(u) + `(v).

Proof. Part (a) is evident from the axioms of a root system.

For part (b), let Φ+ be the positive system in Φ containing ∆, and suppose α ∈ Φ+ \ΦJ . Then α involves
some simple root γ /∈ ∆J , and it follows that sβα still involves γ with a positive coefficient for all β ∈ ∆J .
We deduce that sβα > 0 for β ∈ ∆J , so wα > 0 for w ∈ WJ . Thus the roots in Φ+ sent by w ∈ WJ

to negative roots are precisely the roots in Φ+
J sent by w to negative roots. It follows that the length

function of WJ coincides with the restriction of the length function of W .

For part (c), fix w ∈ W and choose an element u ∈ wWJ of smallest possible length. Define v ∈ WJ so
that w = uv. We must have u ∈ W J since us ∈ wWJ for all s ∈ J . To show that `(w) = `(u) + `(v) we
use the deletion condition. Suppose u = s1 · · · sq and v = t1 · · · tr are reduced expressions. If `(w) < q+r
then we can omit two factors from s1 · · · sqt1 · · · tr and still get w. Omitting any si would lead to a
shorter coset representative in wWJ , while omitting two factors from t1 · · · tr would contradict `(v) = r.
Conclude that `(w) = `(u) + `(v).

Our argument applies to any w ∈ W , so it must hold that u is the unique shortest element in wWJ . It
remains to show that W J ∩ wWJ = {u}. Suppose u′ ∈ W J ∩ wWJ . Then u′ = uv′ for some v′ ∈ WJ . If
v′ 6= 1 then for any s ∈ J with `(v′s) < `(v′) we would have `(u′s = `(uv′s) = `(u) + `(v′s) < `(u′), a
contradiction. Hence v′ = 1 so u = u′.

Elements of the set W J are minimal (left) coset representatives.

We refer to WJ as a (standard) parabolic subgroup.

The proposition shows that (WJ , J) is a Coxeter system.

A Coxeter system (W,S) is irreducible if its Coxeter graph is connected, meaning that there is a path
following the edges of the graph between any two vertices. To classify the finite reflection groups, it
suffices to classify the irreducible ones:

Proposition. Let (W,S) be a finite reflection group with Coxeter graph Γ. Let Γ1, . . . ,Γr be the
connected components of Γ, and let Si be the set of vertices in Γi.

Then W = WS1
× · · · ×WSr

and each (WSi
, Si) is irreducible.

Proof. We proceed by induction on r. Since the elements of Si commute with the elements of Sj for
i 6= j, it is clear that the indicated parabolic subgroups centralize each other, so each is normal.

The product of these groups contains S so is all of W . By induction WS\Sr
= WS1 × · · · ×WSr−1 . It

remains to show the indicated subgroups are disjoint. This will derive from the following lemma:

Lemma. If I, J ⊂ S and I ∩ J = ∅, then WI ∩WJ = {1}.
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Proof. If w ∈WI then wu = u for all u ∈ V ⊥I where

V ⊥I = {u ∈ V : (u, v) = 0 for all v ∈ VI},

since this clearly holds when w = sα ∈ I. By symmetry if w ∈WI∩WJ then wu = u for all u ∈ V ⊥I +V ⊥J .
But it is an exercise in linear algebra to check that

V ⊥I + V ⊥J = (VI ∩ VJ)⊥ = (VI∩J)⊥ = 0⊥ = V,

so if w ∈WI ∩WJ then w = 1.

Next time we will sketch the classification of finite reflection groups, and then start the general theory of
Coxeter systems.
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