MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 6

1 Last time: reflection groups as Coxeter groups

Recall our familiar setup:
1. V is a real vector space with a symmetric, positive definite, bilinear form (-,-) : V x V — R.
2. ® C V is a root system.
3. II C @ is a positive system. We write o > 0 to mean « € II.
4. A C1II is a simple system.
Let S={sq:a€ A}t and W = (sq : @ € D)

The length of w € W (with respect to the choices of A, TI, and ®) is the smallest integer r > 0 such that
w = 8182 - - 8 where each s; € S. Denote this length as ¢(w). This is also the number of positive roots
« € II such that wa is not positive.

The exchange principle is the fact that if w = sys2---s, where each s; € S and ¢(w) < r, then we can
delete exactly two factors s; and s; without changing the product.

Define m(s,t) for s,t € S as the smallest integer n > 0 such that (st)™ = 1, i.e., the order of st in W.

Theorem. The reflection group W then has the presentation
W={(seS:(st)y"*t) =1 for all s,t € S).

Therefore, if G is a group and f : S — G is any map, then f extends to a group homomorphism W — G
if and only if (f(s)f(t))™® =1 for all s,t € S.

The theorem shows that every finite reflection group is a Cozeter group, which is defined as follows:

Definition. A Cozeter group is a group W generated by a set .S with a presentation of the form
W=(seS:(st)y™>) =1 for s,t € S with m(s,t) # co)
where m : S x S — {1,2,3,...} U{oo} is a map with m(s,t) = m(t,s) and m(s,s) =1 for all s, € S.

The pair (W, S) is a Cozeter system.

2 Coxeter graphs

A graph G = (V, E) is a pair consisting of a set of vertices V', and a set E of subsets of V of size two,
which we call edges. A weighted graph is a graph G = (V, E) plus a map which assigns a weight (e.g., a
number, a color, etc.) to each edge. All of graphs today will be weighted graphs with edge weights given
by elements of {3,4,5,...} U {oco}.

A Coxeter system (W,S) may be encoded by its Coxeter graph (which we’ll also sometimes call the
Cozxeter diagram) which is defined as the weighted graph with vertex set S and with an edge labeled by
m(s,t) from s to t whenever s,t € S are such that m(s,t) > 2.
For example:
3 4

a—b—c
is the Coxeter graph of W = {(a,b,c : > = b? = ¢? = (ab)® = (bc)* = (ac)? = 1). By convention, people
often omit any edge weights equal to 3 from these diagrams. An example using this convention:

a — b

| |

c — d
is the graph of W = (a,b,c,d : a®> = b*> = ¢ = d? = (ad)? = (bc)? = (ab)? = (bd)?® = (cd)? = (ac)?).
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Example (Symmetric groups). Let ® = {e; —e; : ¢ # j} CR" and A = {e; —e;41 : 1 <@ < n}.

Recall that W = (s1,82,...,8p-1) =S, for s; = s, since s; — (4,7 + 1) extends to an isomorphism.

i1
Let S = {s1,52,...,5,—1). For s;,5; € S, we then have:
e m(s;,s;) = order of 1 if § = j.
e m(s;,s;) = order of (¢,5+1,i+2) or (¢,i+2,i+1)if |i — j| =1
e m(s;,s;) = order of (i,i+1)(j,7+1) if [i — j| > 1.
Thus m(s;, s;) is 1, 2 or 3 according to whether |i — j| is 0, 1, or > 2.
It follows that the Coxeter graph of (W, S) is

§1 —8S2— ... — Sp—-1-

Remember that the unlabeled edges are secretly labeled by 3’s.
Example (Dihedral groups). Fix m > 3.

Let @z{[ Cf)S(’%@) ] :izO,l,...,Zm} C R? where 6 = 7/m.
sin(i0)

This is a root system. For positive roots, we can take the vectors [ ﬂyc ] €®dwithz>0o0rz=0,y>0.
The corresponding simple system A = {a, 8} then must consist of the two positive roots making the
largest angle, since the RT-span of any two roots stays inside the cone they determine.
The group W = (s, sg) is a finite reflection group of order 2m, so it has a presentation of the form

W = (sa, 851 55 = 55 = (sasp)’ = 1).

The question mark ? stands in for the order of s,s5. To compute this, either note that s,sg is a rotation
by angle 27 /m, or try listing the distinct elements of W and note that |W| = 2m.

In this case, the Coxeter graph of (W, S) is

m
S — 8-

If we set m = oo in this diagram then the corresponding Coxeter group W is the infinite dihedral group.
Any graph with edges labeled by elements of {3,4,5,...} U{oco} is the graph of a Coxeter system.

Remark. Any (weighted graph) automorphism of a Coxeter diagram extends to an automorphism of
the corresponding Coxeter group. (An automorphism of a graph is a permutation of its vertices which

preserves edges and edge weights.) This is because any graph automorphism provides us with a map
S — S which preserves all the required relations.

For example, the graph automorphism
§1 — 82 — ... — Sp—-1 — Sp — Sp—1 — ... — 81

corresponds to the inner automorphism of S,, given by o — wgowg for wg =n---321.

3 Parabolic subgroups

When the Coxeter graph of a finite reflection group is not connected, each of its connected components is
the Coxeter graph of a smaller Coxeter group. As one might hope, each of these Coxeter groups is itself
a reflection group. To be precise:
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Proposition. Fix a simple system A in a root system @ in a real vector space V (with a bilinear form
with the usual properties). Let S = {s, : @ € A} and suppose J C S. Define

Aj={a€A:s,€J} and V; = R-span{a € Ay} and S;=dNV;.

(a) ®; C V is a root system with simple system A ; and corresponding reflection group W; = (s € J).
(b) The length function of W relative to A is the restriction of the length function of W.
(c) Define W7 = {w € W : £(ws) > {(w) for all s € J}.

For each w € W, there are unique elements v € W+ and v € W such that w = uw.

It moreover holds that £(w) = £(u) + £(v).

Proof. Part (a) is evident from the axioms of a root system.

For part (b), let T be the positive system in ® containing A, and suppose o € ®T\ ® ;. Then « involves
some simple root v ¢ A, and it follows that sga still involves v with a positive coefficient for all 3 € A .
We deduce that sga > 0 for B € Ay, so wa > 0 for w € W;. Thus the roots in T sent by w € W
to negative roots are precisely the roots in <I>j sent by w to negative roots. It follows that the length
function of W coincides with the restriction of the length function of W.

For part (c), fix w € W and choose an element u € wW) of smallest possible length. Define v € W so
that w = uv. We must have u € W since us € wWj for all s € J. To show that £(w) = £(u) + £(v) we
use the deletion condition. Suppose v = s --- s, and v = t; - - - ¢, are reduced expressions. If {(w) < g+
then we can omit two factors from s;---s.t1---t, and still get w. Omitting any s; would lead to a
shorter coset representative in wW;, while omitting two factors from ¢; - - - ¢, would contradict £(v) = r.
Conclude that ¢(w) = £(u) + £(v).

Our argument applies to any w € W, so it must hold that « is the unique shortest element in wWj. It
remains to show that W7 NwWj; = {u}. Suppose ' € W/ NwW;. Then v/ = uv' for some v’ € W. If
v" # 1 then for any s € J with £(v's) < £(v") we would have £(u's = £(uv's) = £(u) + £(v's) < L(u), a
contradiction. Hence v/ =1 so v = /. O
Elements of the set W are minimal (left) coset representatives.

We refer to W as a (standard) parabolic subgroup.

The proposition shows that (W, J) is a Coxeter system.

A Coxeter system (W, S) is irreducible if its Coxeter graph is connected, meaning that there is a path
following the edges of the graph between any two vertices. To classify the finite reflection groups, it
suffices to classify the irreducible ones:

Proposition. Let (W, S) be a finite reflection group with Coxeter graph I". Let I'y,..., T, be the
connected components of I', and let S; be the set of vertices in I';.

Then W = Wg, x --- x Wg, and each (Wg,, S;) is irreducible.

Proof. We proceed by induction on r. Since the elements of S; commute with the elements of S; for
i # 7, it is clear that the indicated parabolic subgroups centralize each other, so each is normal.

The product of these groups contains S so is all of W. By induction We\g, = Wg, x -+ x Wg__,. It
remains to show the indicated subgroups are disjoint. This will derive from the following lemma:

Lemma. If I,J C S and INJ =@, then Wy NW; = {1}.
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Proof. If w € Wy then wu = u for all u € Vi~ where
Vi ={ueV:(uv)=0forallveV;},

since this clearly holds when w = s, € I. By symmetry if w € W;NW, then wu = u for all u € Vi + V3.
But it is an exercise in linear algebra to check that

VE4+VE=WinV)t = (Vin))t =0t =V,

soif we W;NWj; then w = 1. O

Next time we will sketch the classification of finite reflection groups, and then start the general theory of
Coxeter systems.
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