1 Last time: reflection groups as Coxeter groups

Recall our familiar setup:

- 1. V is a real vector space with a symmetric, positive definite, bilinear form $(\cdot, \cdot): V \times V \to \mathbb{R}$.
- 2. $\Phi \subset V$ is a root system.
- 3. $\Pi \subset \Phi$ is a positive system. We write $\alpha > 0$ to mean $\alpha \in \Pi$.
- 4. $\Delta \subset \Pi$ is a simple system.

Let $S = \{s_{\alpha} : \alpha \in \Delta\}$ and $W = \langle s_{\alpha} : \alpha \in \Phi \rangle$

The length of $w \in W$ (with respect to the choices of Δ , Π , and Φ) is the smallest integer $r \geq 0$ such that $w = s_1 s_2 \cdots s_r$ where each $s_i \in S$. Denote this length as $\ell(w)$. This is also the number of positive roots $\alpha \in \Pi$ such that $w\alpha$ is not positive.

The exchange principle is the fact that if $w = s_1 s_2 \cdots s_r$ where each $s_i \in S$ and $\ell(w) < r$, then we can delete exactly two factors s_i and s_j without changing the product.

Define m(s,t) for $s,t \in S$ as the smallest integer n > 0 such that $(st)^n = 1$, i.e., the order of st in W.

Theorem. The reflection group W then has the presentation

$$W = \langle s \in S : (st)^{m(s,t)} = 1 \text{ for all } s, t \in S \rangle.$$

Therefore, if G is a group and $f: S \to G$ is any map, then f extends to a group homomorphism $W \to G$ if and only if $(f(s)f(t))^{m(s,t)} = 1$ for all $s, t \in S$.

The theorem shows that every finite reflection group is a *Coxeter group*, which is defined as follows:

Definition. A Coxeter group is a group W generated by a set S with a presentation of the form

$$W = \langle s \in S : (st)^{m(s,t)} = 1 \text{ for } s, t \in S \text{ with } m(s,t) \neq \infty \rangle$$

where $m: S \times S \to \{1, 2, 3, \dots\} \cup \{\infty\}$ is a map with m(s, t) = m(t, s) and m(s, s) = 1 for all $s, t \in S$.

The pair (W, S) is a Coxeter system.

2 Coxeter graphs

A graph $\mathcal{G} = (V, E)$ is a pair consisting of a set of vertices V, and a set E of subsets of V of size two, which we call edges. A *weighted graph* is a graph $\mathcal{G} = (V, E)$ plus a map which assigns a weight (e.g., a number, a color, etc.) to each edge. All of graphs today will be weighted graphs with edge weights given by elements of $\{3, 4, 5, \ldots\} \cup \{\infty\}$.

A Coxeter system (W, S) may be encoded by its *Coxeter graph* (which we'll also sometimes call the *Coxeter diagram*) which is defined as the weighted graph with vertex set S and with an edge labeled by m(s,t) from s to t whenever $s, t \in S$ are such that m(s,t) > 2.

For example:

 $a \xrightarrow{3} b \xrightarrow{4} c$

is the Coxeter graph of $W = \langle a, b, c : a^2 = b^2 = c^2 = (ab)^3 = (bc)^4 = (ac)^2 = 1 \rangle$. By convention, people often omit any edge weights equal to 3 from these diagrams. An example using this convention:

Example (Symmetric groups). Let $\Phi = \{e_i - e_j : i \neq j\} \subset \mathbb{R}^n$ and $\Delta = \{e_i - e_{i+1} : 1 \leq i < n\}$.

Recall that $W = \langle s_1, s_2, \dots, s_{n-1} \rangle \cong S_n$ for $s_i = s_{e_i - e_{i+1}}$ since $s_i \mapsto (i, i+1)$ extends to an isomorphism. Let $S = \{s_1, s_2, \dots, s_{n-1}\}$. For $s_i, s_j \in S$, we then have:

- $m(s_i, s_j) = \text{order of 1 if } i = j.$
- $m(s_i, s_j) = \text{order of } (i, i+1, i+2) \text{ or } (i, i+2, i+1) \text{ if } |i-j| = 1.$
- $m(s_i, s_j) = \text{order of } (i, i+1)(j, j+1) \text{ if } |i-j| > 1.$

Thus $m(s_i, s_j)$ is 1, 2 or 3 according to whether |i - j| is 0, 1, or ≥ 2 .

It follows that the Coxeter graph of (W, S) is

$$s_1-s_2-\ldots-s_{n-1}.$$

Remember that the unlabeled edges are secretly labeled by 3's.

Example (Dihedral groups). Fix $m \ge 3$.

Let
$$\Phi = \left\{ \begin{bmatrix} \cos(i\theta) \\ \sin(i\theta) \end{bmatrix} : i = 0, 1, \dots, 2m \right\} \subset \mathbb{R}^2$$
 where $\theta = \pi/m$.

This is a root system. For positive roots, we can take the vectors $\begin{bmatrix} x \\ y \end{bmatrix} \in \Phi$ with x > 0 or x = 0, y > 0.

The corresponding simple system $\Delta = \{\alpha, \beta\}$ then must consist of the two positive roots making the largest angle, since the \mathbb{R}^+ -span of any two roots stays inside the cone they determine.

The group $W = \langle s_{\alpha}, s_{\beta} \rangle$ is a finite reflection group of order 2*m*, so it has a presentation of the form

$$W = \langle s_{\alpha}, s_{\beta} : s_{\alpha}^2 = s_{\beta}^2 = (s_{\alpha}s_{\beta})^? = 1 \rangle.$$

The question mark ? stands in for the order of $s_{\alpha}s_{\beta}$. To compute this, either note that $s_{\alpha}s_{\beta}$ is a rotation by angle $2\pi/m$, or try listing the distinct elements of W and note that |W| = 2m.

In this case, the Coxeter graph of (W, S) is

$$s_{\alpha} \stackrel{m}{-} s_{\beta}.$$

If we set $m = \infty$ in this diagram then the corresponding Coxeter group W is the *infinite dihedral group*. Any graph with edges labeled by elements of $\{3, 4, 5, ...\} \cup \{\infty\}$ is the graph of a Coxeter system.

Remark. Any (weighted graph) automorphism of a Coxeter diagram extends to an automorphism of the corresponding Coxeter group. (An automorphism of a graph is a permutation of its vertices which preserves edges and edge weights.) This is because any graph automorphism provides us with a map $S \rightarrow S$ which preserves all the required relations.

For example, the graph automorphism

 $s_1 - s_2 - \ldots - s_{n-1} \quad \mapsto \quad s_n - s_{n-1} - \ldots - s_1$

corresponds to the inner automorphism of S_n given by $\sigma \mapsto w_0 \sigma w_0$ for $w_0 = n \cdots 321$.

3 Parabolic subgroups

When the Coxeter graph of a finite reflection group is not connected, each of its connected components is the Coxeter graph of a smaller Coxeter group. As one might hope, each of these Coxeter groups is itself a reflection group. To be precise: **Proposition.** Fix a simple system Δ in a root system Φ in a real vector space V (with a bilinear form with the usual properties). Let $S = \{s_{\alpha} : \alpha \in \Delta\}$ and suppose $J \subset S$. Define

 $\Delta_J = \{ \alpha \in \Delta : s_\alpha \in J \} \quad \text{and} \quad V_J = \mathbb{R}\text{-span}\{ \alpha \in \Delta_J \} \quad \text{and} \quad \Phi_J = \Phi \cap V_J.$

- (a) $\Phi_J \subset V$ is a root system with simple system Δ_J and corresponding reflection group $W_J = \langle s \in J \rangle$.
- (b) The length function of W_J relative to Δ_J is the restriction of the length function of W.
- (c) Define $W^J = \{ w \in W : \ell(ws) > \ell(w) \text{ for all } s \in J \}.$

For each $w \in W$, there are unique elements $u \in W^J$ and $v \in W_J$ such that w = uv.

It moreover holds that $\ell(w) = \ell(u) + \ell(v)$.

Proof. Part (a) is evident from the axioms of a root system.

For part (b), let Φ^+ be the positive system in Φ containing Δ , and suppose $\alpha \in \Phi^+ \setminus \Phi_J$. Then α involves some simple root $\gamma \notin \Delta_J$, and it follows that $s_{\beta}\alpha$ still involves γ with a positive coefficient for all $\beta \in \Delta_J$. We deduce that $s_{\beta}\alpha > 0$ for $\beta \in \Delta_J$, so $w\alpha > 0$ for $w \in W_J$. Thus the roots in Φ^+ sent by $w \in W_J$ to negative roots are precisely the roots in Φ_J^+ sent by w to negative roots. It follows that the length function of W_J coincides with the restriction of the length function of W.

For part (c), fix $w \in W$ and choose an element $u \in wW_J$ of smallest possible length. Define $v \in W_J$ so that w = uv. We must have $u \in W^J$ since $us \in wW_J$ for all $s \in J$. To show that $\ell(w) = \ell(u) + \ell(v)$ we use the deletion condition. Suppose $u = s_1 \cdots s_q$ and $v = t_1 \cdots t_r$ are reduced expressions. If $\ell(w) < q + r$ then we can omit two factors from $s_1 \cdots s_q t_1 \cdots t_r$ and still get w. Omitting any s_i would lead to a shorter coset representative in wW_J , while omitting two factors from $t_1 \cdots t_r$ would contradict $\ell(v) = r$. Conclude that $\ell(w) = \ell(u) + \ell(v)$.

Our argument applies to any $w \in W$, so it must hold that u is the unique shortest element in wW_J . It remains to show that $W^J \cap wW_J = \{u\}$. Suppose $u' \in W^J \cap wW_J$. Then u' = uv' for some $v' \in W_J$. If $v' \neq 1$ then for any $s \in J$ with $\ell(v's) < \ell(v')$ we would have $\ell(u's) = \ell(uv's) = \ell(u) + \ell(v's) < \ell(u')$, a contradiction. Hence v' = 1 so u = u'.

Elements of the set W^J are minimal (left) coset representatives.

We refer to W_J as a *(standard) parabolic subgroup*.

The proposition shows that (W_J, J) is a Coxeter system.

A Coxeter system (W, S) is *irreducible* if its Coxeter graph is connected, meaning that there is a path following the edges of the graph between any two vertices. To classify the finite reflection groups, it suffices to classify the irreducible ones:

Proposition. Let (W, S) be a finite reflection group with Coxeter graph Γ . Let $\Gamma_1, \ldots, \Gamma_r$ be the connected components of Γ , and let S_i be the set of vertices in Γ_i .

Then $W = W_{S_1} \times \cdots \times W_{S_r}$ and each (W_{S_i}, S_i) is irreducible.

Proof. We proceed by induction on r. Since the elements of S_i commute with the elements of S_j for $i \neq j$, it is clear that the indicated parabolic subgroups centralize each other, so each is normal.

The product of these groups contains S so is all of W. By induction $W_{S\setminus S_r} = W_{S_1} \times \cdots \times W_{S_{r-1}}$. It remains to show the indicated subgroups are disjoint. This will derive from the following lemma:

Lemma. If $I, J \subset S$ and $I \cap J = \emptyset$, then $W_I \cap W_J = \{1\}$.

Proof. If $w \in W_I$ then wu = u for all $u \in V_I^{\perp}$ where

$$V_I^{\perp} = \{ u \in V : (u, v) = 0 \text{ for all } v \in V_I \},\$$

since this clearly holds when $w = s_{\alpha} \in I$. By symmetry if $w \in W_I \cap W_J$ then wu = u for all $u \in V_I^{\perp} + V_J^{\perp}$. But it is an exercise in linear algebra to check that

$$V_I^{\perp} + V_J^{\perp} = (V_I \cap V_J)^{\perp} = (V_{I \cap J})^{\perp} = 0^{\perp} = V,$$

so if $w \in W_I \cap W_J$ then w = 1.

Next time we will sketch the classification of finite reflection groups, and then start the general theory of Coxeter systems.