
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 7

1 Last time: Coxeter graphs and parabolic subgroups

To start, recall our new definition of principal interest:

Definition. A Coxeter group is a group W generated by a set S with a presentation of the form

W = 〈s ∈ S : (st)m(s,t) = 1 for s, t ∈ S with m(s, t) 6=∞〉

where m : S × S → {1, 2, 3, . . . } ∪ {∞} is a map with m(s, t) = m(t, s) and m(s, s) = 1 for all s, t ∈ S.

The pair (W,S) is a Coxeter system.

Given (W,S), the function m can be recovered by setting m(s, t) equal to the order of st.

Theorem. Each finite reflection group W is a finite Coxeter group with respect to the generating set
S = {sα : α ∈ ∆} of simple reflections corresponding to any simple system ∆ in any root system whose
reflections generate W .

A weighted graph consists of a set of vertices V , a set of edges E given by subsets of V of size two, and
a map assigning a weight to each edge.

The Coxeter graph/diagram of a Coxeter system (W,S) is the weighted graph with vertex set S, and with
an edge labeled by m(s, t) from s to t whenever s, t ∈ S are such that m(s, t) > 2. Any weighted graph
whose edge weights belong to {3, 4, 5, . . . } ∪ {∞} arises as the Coxeter graph of some Coxeter system.

Since edge weights of 3 occur quite often, they are usually omitted. So any unlabeled edge in a graph we
draw tacitly is assigned the weight 3.

Example. The Coxeter graph of Sn, which is a Coxeter group with respect to the generating set
{s1, s2, . . . , sn−1} where si = (i, i+ 1), is

s1 — s2 — . . . — sn−1.

Example. The Coxeter graph of Bn ⊂ S2n, which is a Coxeter group with respect to the generating set
{t1, t2, . . . , tn−1} where ti = sis2n−i for i < n and tn = sn, is

t1 — t2 — . . . — tn−1
4

— tn.

Remark. Two Coxeter groups which are isomorphic as abstract groups may nevertheless have non-
isomorphic Coxeter graphs. We saw an example of this on the second homework assignment.

Given a Coxeter system (W,S) and a subset J , define WJ = 〈s ∈ J〉 ⊂W .

Proposition. Suppose W is a finite reflection group generated by S = {sα : α ∈ ∆} where ∆ is a simple
system in some root system Φ ⊂ V . If J ⊂ S, then

(a) ∆J = {α ∈ ∆ : sα ∈ J} is a simple system in ΦJ = Φ ∩ R∆J , which is a root system.

(b) WJ is a reflection group whose length function with respect to ∆J is the restriction of the length
function of W with respect to ∆.

In particular, (WJ , J) is a Coxeter system.

A similar statement holds without the hypothesis that W be a finite reflection group.

We call WJ a (standard) parabolic subgroup.

A Coxeter system (W,S) is irreducible if its graph is connected.
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Proposition. If (W,S) is a Coxeter system which is not irreducible, then W is the direct product of the
parabolic subgroups which correspond to its graph’s connected components.

Thus we can understand all finite reflection groups by identifying the finite reflection groups which are
irreducible. The definitions in the last few lectures give us a convenient language for describing precisely
what these are:

Theorem. A Coxeter group is an irreducible finite reflection group if and only if its Coxeter graph
belongs to one of the following four infinite families or 6 exceptions:

Note that the graph of type I2(p) is the same as A2, B2, H2, G2 for p = 3, 4, 5, 6.

To ultimately prove this (which we won’t do today), we will study the a priori harder problem of
classifying the finite irreducible Coxeter groups. Later we will see that this classification consists entirely
of reflection groups.

2 General theory of Coxeter systems

We now begin to develop the theory of general Coxeter systems in some detail. Most of this theory will
be inspired by, and greatly generalize, our results for finite reflection groups.

Let (W,S) be a Coxeter system. There is no need to require that S be a finite set, though most of the
examples we encounter will have this property.

Proposition. The unique map sgn : S → {−1} extends to a homomorphism W → {±1}.

It follows that |W | ≥ 2.

Proof. Observe that ((−1)(−1))m(s,t) = (+1)m(s,t) = 1.

Define the length function of (W,S) exactly as for reflection groups: let this be the map ` : W → N which
assigns to w the smallest integer r ≥ 0 such that w = s1s2 · · · sr for some si ∈ S.

Call w = s1s2 · · · sr a reduced expression for w if si ∈ S and `(w) = r.

We have all of the usual properties of length functions (for u, v, w ∈W ):

• `(1) = 0.

• `(w) = `(w−1).

• `(uv) ≤ `(u) + `(v).

• `(uv) ≥ `(u)− `(v).

• |`(ws)− `(w)| = 1 for all s ∈ S.

The last property implies that sgn(w) = (−1)`(w) for w ∈W .

We need a better, more geometric interpretation of `. To get this, we will identify W as a group generated
by “reflections” in a vector space V with a symmetric bilinear form. In contrast to our setup for reflection
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groups, the form will no longer be required to be positive definite, and so the analogy between the maps
we call reflections and the usual idea of a reflection in Euclidean space will be somewhat weaker.

Given (W,S), define V as the real vector space R-span{αs : s ∈ S}. Here, each αs is just a formal symbol.

We endow V with the bilinear form defined by

(αs, αt) = − cos(π/m(s, t)) for s, t ∈ S.

Each αs is a unit vector with respect to this form.

Two vectors αs and αt are orthogonal iff m(s, t) = 2.

Moreover, we have (αs, αt) ≤ 0 if s 6= t.

For s ∈ S define σs : V → V as the linear map

σsv = v − 2(αs, v)αs.

Proposition. Let s ∈ S and u, v ∈ V .

(a) σsαs = −αs.

(b) If (αs, v) = 0 then σsv = v.

(c) (σsu, σsv) = (u, v).

Proof. The proof is the same as for reflection groups.

Lemma. If L = Rαs and U = {u ∈ V : (αs, u) = 0} then V = L⊕ U .

Proof. We need to show that L ∩ U = 0, but this is obvious as (αs, λαs) = λ for all λ ∈ R. To see that
V = L+ U , note that if v ∈ V then v = u+ λαs for u = v − (αs, v)αs ∈ U and λ = (αs, v).

Corollary. If s ∈ S then σ2
s = 1.

As usual, let m(s, t) denote the order of st in W for s, t ∈ S. The rest of today will be spent proving the
following theorem:

Theorem. For each s, t ∈ S, it holds that (σsσt)
m(s,t) = 1. Hence the map S 7→ GL(V ) given by s 7→ σs

uniquely extends to a homomorphism σ : W → GL(V ).

We call this homomorphism the geometric representation of (W,S).

Sometimes, we also refer to the vector space V itself as the geometric representation of (W,S).

Proof. Fix s, t ∈ S and let m = m(s, t) and Vst = Rαs ⊕ Rαt.

Claim. The restriction of (·, ·) to Vst is positive semidefinite, meaning that (v, v) is always nonnegative.
The restricted form is nondegenerate if and only if m <∞.

Proof. If v = aαs + bαt then

(v, v) = a2 + b2 − 2ab cos(π/m) = (a− b cos(π/m))2 + b2 sin2(π/m) ≥ 0.

If m =∞, then (v, v) = 0 whenever a = b. If m <∞ and v 6= 0, then evidently (v, v) > 0.

Claim. σsVst = σtVst = Vst.
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Proof. The definition of σs shows that σsVst ⊂ Vst, and the inclusion must be an equality as σs is
invertible.

It therefore makes sense to compute the order of σsσt as a linear map Vst → Vst. There are two cases:

(a) If m <∞ then the restricted form is positive definite so both σs and σt act as orthogonal reflections.
Since (αs, αt) = − cos(π/m) = cos(π − π/m), the angle between the lines Rαs and Rαt is π/m,
and it follows from our earlier analysis of the dihedral groups that σsσt acts on Vst as a rotation
by angle 2π/m. Therefore the order of σsσt restricted to Vst is exactly m.

(b) If m = ∞ then (αs, αt) = −1, and one can show by induction that (σsσt)
kαs = 2k(αs + αt) + αs.

It follows that (σsσt)
k 6= 1 for all k > 0, so σsσt has infinite order.

In case (a), σsσt must have order m in GL(V ) since V = Vst ⊕ U for

U = {u ∈ V : (u, v) = 0 for all v ∈ Vst},

and σsσt fixes U pointwise. (Indeed, note that U ∩ Vst = 0 since the form (·, ·) is positive definite on Vst.
We have V = Vst + U since V = Rαs + (Rαs)⊥ = Rαt + (Rαt)⊥.)

We conclude in either cases that (σsσt)
m(s,t) = 1.

Next time, we will augment this result by showing that σ : W → GL(V ) is faithful, i.e., injective.
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