1 Last time: Coxeter groups in general

Recall another equivalent definition of a Coxeter system:
Definition. A Coxeter system (W, S) is a pair in which

1. W is a group.
2. $S \subset W$ generates W.
3. Every $s \in S$ has $s^{2}=1 \neq s$.
4. The natural map $\left\langle s \in S:(s t)^{m(s, t)}=1\right.$ for $s, t \in S$ with $\left.m(s, t)<\infty\right\rangle \rightarrow W$ is an isomorphism, where $m(s, t)$ denotes the order of $s t \in W$ for $s, t \in S$.
We say that W is a Coxeter group relative to the set of simple generators S.
The Coxeter graph of a Coxeter system (W, S) is the weighted graph with vertex set S, and with an edge labeled by $m(s, t)$ from s to t whenever $s, t \in S$ are such that $m(s, t)>2$.

The length function of (W, S) is the map $\ell: W \rightarrow \mathbb{N}$ which assigns to w the smallest integer $r \geq 0$ such that $w=s_{1} s_{2} \cdots s_{r}$ for some $s_{i} \in S$.
Call $w=s_{1} s_{2} \cdots s_{r}$ a reduced expression for w if $s_{i} \in S$ and $\ell(w)=r$.
Given (W, S), define V as the real vector space $\mathbb{R}-\operatorname{span}\left\{\alpha_{s}: s \in S\right\}$. Here, each α_{s} is just a formal symbol. Define (\cdot, \cdot) as the bilinear form in V with $\left(\alpha_{s}, \alpha_{t}\right)=-\cos (\pi / m(s, t))$ for $s, t \in S$. Each α_{s} is a unit vector with respect to this form.

Theorem. For each $s, t \in S$, it holds that $\left(\sigma_{s} \sigma_{t}\right)^{m(s, t)}=1$. Hence the map $S \mapsto \mathrm{GL}(V)$ given by $s \mapsto \sigma_{s}$ uniquely extends to a homomorphism $\sigma: W \rightarrow \mathrm{GL}(V)$.
We call this homomorphism the geometric representation of (W, S).
Note, for $s \in S$:

1. $\sigma_{s} \alpha_{s}=-\alpha_{s}$.
2. σ_{s} preserves (\cdot, \cdot).
3. $\sigma_{s} v=0$ if $\left(\alpha_{s}, v\right)=0$.
4. $\sigma_{s}^{2}=1$.

Notation: from now on, we write $w v$ in place of $\sigma_{w} v$ for the action of $w \in W$ on $v \in V$ under the geometric representation.

2 Root system of a Coxeter group

Let (W, S) be a Coxeter system.
Define the root system Φ of (W, S) to be the set $\left\{w \alpha_{s}: w \in W, s \in S\right\}$.
Note that

1. Every $\alpha \in \Phi$ has $(\alpha, \alpha)=1$.
2. $w \Phi=\Phi$ for all $w \in W$.
3. $\Phi=-\Phi$ since if $\alpha=w \alpha_{s}$ then $w s \alpha_{s}=-\alpha$.

By definition, every $\alpha \in V$ can be written uniquely as

$$
\alpha=\sum_{s \in S} c_{s} \alpha_{s} \quad \text { with } c_{s} \in \mathbb{R}
$$

Call α positive and write $\alpha>0$ if every $c_{s} \geq 0$ in this decomposition and $\alpha \neq 0$. Call α negative and write $\alpha<0$ if every $c_{s} \geq 0$ in this decomposition and $\alpha \neq 0$.
Let $\Phi^{+}=\{\alpha \in \Phi: \alpha>0\}$ and $\Phi^{-}=\{\alpha \in \Phi: \alpha<-0\}$.
Also, given $J \subset W$, let $W_{J}=\langle J\rangle \subset W$ and define $\ell_{J}: W_{J} \rightarrow \mathbb{N}$ as the map which assigns to $w \in W_{J}$ the least integer $r \geq 0$ such that $w=s_{1} \cdots s_{r}$ for some $s_{i} \in J$.

Note that $\ell(w) \leq \ell_{J}(w)$ for all $w \in W_{J}$. Later, we will see that this inequality is an equality.
We arrive to today's main new result:
Theorem. Let $w \in W$ and $s \in S$.
(1) If $\ell(w s)>\ell(w)$ then $w \alpha_{s}>0$.
(2) If $\ell(w s)<\ell(w)$ then $w \alpha_{s}<0$.

Proof. Note that $(1) \Rightarrow(2)$ since if $v=w s$ then $\ell(w s)<\ell(w) \Leftrightarrow \ell(v s)>\ell(v)$ and $w \alpha_{s}<0 \Leftrightarrow v \alpha_{s}>0$. We prove (1) by induction on $\ell(w)$. Assume $\ell(w s)>\ell(w)$. If $\ell(w)=0$ then $w=1$ and $w \alpha_{s}=\alpha_{s}>0$. Suppose $\ell(w)>0$ and that w has a reduced expression ending in $t \in S$. Then $\ell(w t)<\ell(w)$ so $s \neq t$.

Let $J=\{s, t\}$, and consider

$$
A=\left\{v \in W: v^{-1} w \in W_{J} \text { and } \ell(v)+\ell_{J}\left(v^{-1} w\right)=\ell(w)\right\}
$$

Note that $w \in A$ so that A is not empty. We may therefore choose $v \in A$ with minimal length.
Write $v_{J}=v^{-1} w \in W_{J}$. Then $\ell(w)=\ell(v)+\ell_{J}\left(v_{J}\right)$ by definition. Note that $w t \in A$ since $\left(t w^{-1}\right) w=$ $t \in W_{J}$ and $\ell(w t)+\ell_{J}(t)=(\ell(w)-1)+1=\ell(w)$. Therefore we must have $\ell(v) \leq \ell(w t)=\ell(w)-1$.
If $\ell(v s)<\ell(v)$ then we would have

$$
\begin{aligned}
\ell(w) & \leq \ell(v s)+\ell\left(\left(s v^{-1}\right) w\right) \\
& \leq \ell(v s)+\ell_{J}\left(s v^{-1} w\right) \\
& =\ell(v)-1+\ell_{J}\left(s v^{-1} w\right) \\
& \leq \ell(v)-1+\ell_{J}\left(v^{-1} w\right)+1=\ell(v)+\ell_{J}\left(v^{-1} w\right)=\ell(w)
\end{aligned}
$$

in which case all inequalities would have to be equalities and we would have $\ell(w)=\ell(v s)+\ell_{J}\left(\left(s v^{-1}\right) w\right)$ so $v s \in A$. But this would contradict the minimality of $\ell(v)$.
Therefore $\ell(v s)>\ell(v)$, so by induction $v \alpha_{s}>0$. A similar argument shows that $\ell(v t)>\ell(v)$ so by induction $v \alpha_{t}>0$. As $w=v v_{J}$, the theorem will be an immediate consequence of the following lemma:

Lemma. $v_{J} \alpha_{s}=c_{s} \alpha_{s}+c_{t} \alpha_{t}$ where $c_{s} \geq 0$ and $c_{t} \geq 0$.
Proof. We claim that $\ell_{J}\left(v_{J} s\right) \geq \ell_{J}\left(v_{J}\right)$. This follows since if $\ell_{J}\left(v_{J} s\right)<\ell_{J}\left(v_{J}\right)$ then

$$
\ell(w s)=\ell\left(v v^{-1} w s\right) \leq \ell(v)+\ell\left(v^{-1} w s\right)=\ell(v)+\ell\left(v_{J} s\right) \leq \ell(v)+\ell_{J}\left(v_{J} s\right)<\ell(v)+\ell_{J}\left(v_{J}\right)=\ell(w)
$$

but $\ell(w)<\ell(w s)$. Therefore any reduced expression for v_{J} in W_{J} must be an alternating product of the factors s, t ending in t. There are two cases to consider:
(a) If $m(s, t)=\infty$ then it is a straightforward exercise in algebra to show that $v_{J} \alpha_{s}=a \alpha_{s}+b \alpha_{t}$ where $a, b \geq 0$ are integers with $|a-b|=1$.
(b) Suppose $m=m(s, t)<\infty$. We must have $\ell_{J}\left(v_{J}\right)<m$ since the unique element of W_{J} with length m has reduced expressions ending in both s and t. Therefore $v_{J}=(s t)^{k}$ or $v_{J}=t(s t)^{k}$ for some $k<m / 2$. Observe that in the plane spanned by α_{s}, α_{t} in \mathbb{R}^{n}, the vectors α_{s} and α_{t} make an angle of $\pi-\pi / m$ and st acts as a rotation by angle $2 \pi / m$. By drawing the right picture (try to do this!) one deduces that $v_{J} \alpha_{s}$ is in the positive cone spanned by α_{s} and α_{t}, so the lemma again holds.

The theorem has two important corollaries.
Corollary. The root system Φ is the disjoint union of Φ^{+}and Φ^{-}.
This result shows that when Φ is a finite set, it is a root system according to our earlier definition for finite reflection groups.

Proof. Certainly $\Phi^{+} \cap \Phi^{-}=\varnothing$, and if $\alpha=w \alpha_{s} \in \Phi$ for $w \in W$ and $s \in S$ then either $\alpha \in \Phi^{+}$if $\ell(w s)>\ell(w)$ or $\alpha \in \Phi^{-}$if $\ell(w s)<\ell(w)$.

Corollary. The geometric representation $\sigma: W \rightarrow \mathrm{GL}(V)$ is faithful, that is, injective.
Proof. Let w belong to the kernel of σ, so that $w \alpha=\alpha$ for all $\alpha \in V$. If $w \neq 1$ then for some $s \in S$ we have $\ell(w s)<\ell(w)$. But the theorem then implies that $w \alpha_{s}<0$, contradicting our assumption that $w \alpha_{s}=\alpha_{s}>0$. Therefore σ has trivial kernel, so is an injective homomorphism.

As an application of this last result, we can clear up a technical property of parabolic subgroups.
As usual, let (W, S) be a Coxeter system. Suppose $J \subset S$.
The parabolic subgroup corresponding to J is $W_{J}=\langle s \in J\rangle \subset W$.
By restricting $m: S \times S \rightarrow\{1,2,3, \ldots\} \cup\{\infty\}$ to $J \times J$, we may define a Coxeter group

$$
\overline{W_{J}}=\left\langle s \in S:(s t)^{m(s, t)}=1 \text { for } s, t \in J \text { with } m(s, t)<\infty\right\rangle
$$

Clearly $\left(\overline{W_{J}}, J\right)$ is a Coxeter system, and there is a surjective homomorphism

$$
\overline{W_{J}} \rightarrow W_{J}
$$

Proposition. This map is actually an isomorphism, so we can regard $\left(W_{J}, J\right)$ as a Coxeter system.
Proof. Let $V_{J}=\mathbb{R}-\operatorname{span}\left\{\alpha_{s}: s \in J\right\} \subset V$ and let $\overline{V_{J}}$ be the geometric representation of $\overline{W_{J}}$.
Consider the diagram

where the horizontal arrows are the geometric representation of $\overline{W_{J}}$ and W (restricted to W_{J}), where $\overline{W_{J}} \rightarrow W_{J}$ is the surjective map given above, and where ϕ is the isomorphism $\mathrm{GL}\left(\overline{V_{J}}\right) \rightarrow \mathrm{GL}\left(V_{J}\right)$ induced by the obvious identification of $V_{J} \cong \overline{V_{J}}$.
This diagram is commutative (consider the images of $s \in J$), so as the map $\overline{W_{J}} \rightarrow \mathrm{GL}\left(\overline{V_{J}}\right)$ is injective by the previous corollary, the map $\overline{W_{J}} \rightarrow W_{J}$ must also be injective.

Next time: more properties of parabolic subgroups, a geometric interpretation of the length function of W, and the strong exchange condition.

