1 Summary of facts so far

By now we have developed quite a number of general, useful properties of Coxeter systems.
Let (W, S) be a Coxeter system. Write $m(s, t)$ for the order of $s t$ in W for $s, t \in S$, so that

$$
W=\left\langle s \in S:(s t)^{m(s, t)}=1 \text { for } s, t \in S \text { with } m(s, t)<\infty\right\rangle
$$

Define $V=\mathbb{R}$-span $\left\{\alpha_{s}: s \in S\right\}$ as the real vector space with a basis indexed by S, and define (\cdot, \cdot) as the bilinear form on V with $\left(\alpha_{s}, \alpha_{t}\right)=-\cos (\pi / m(s, t))$ for $s, t \in S$.

For any $\alpha \in V$, there is a unique expansion

$$
\alpha=\sum_{s \in S} c_{s} \alpha_{s}
$$

for some real coefficients $c_{s} \in \mathbb{R}$. Write $\alpha>0$ if $\alpha \neq 0$ and every $c_{s} \geq 0$. Write $\alpha<0$ if $-\alpha>0$.
The root system of (W, S) is the set $\Phi=\left\{w \alpha_{s}: w \in W, s \in S\right\} \subset V$.
Let $\Phi^{+}=\{\alpha \in \Phi: \alpha>0\}$ and $\Phi^{-}=\{\alpha \in \Phi: \alpha<0\}$.
The following five theorems summarize most of our progress in the last few lectures.
Theorem (Geometric representation). The vector space V has a unique W-module structure in which $s \in S$ acts as the reflection $s: v \mapsto v-2\left(\alpha_{s}, v\right) \alpha_{s}$ for $v \in V$. With respect to this structure, it holds that $(w u, w v)=(u, v)$ for all $w \in W$ and $u, v \in V$. If $w \in W$ is such that $w v=v$ for all $v \in V$ then $w=1$.

Theorem (Parabolic subgroups). Let $J \subset S$ and define $W_{J}=\langle s \in J\rangle \subset W$
(i) $\left(W_{J}, J\right)$ is a Coxeter system.
(ii) The length function of W_{J} (defined with respect to J) agrees with the length function of W.
(iii) The set S is a minimal generating set of W.
(iv) If $w \in W_{J}$ and $w=s_{1} \cdots s_{r}\left(s_{i} \in S\right)$ is a reduced expression, then every $s_{i} \in J$.

Theorem (Geometric interpretation of length function). The following properties hold:
(a) If $w \in W$ and $s \in S$ then $\ell(w s)<\ell(w)$ if and only if $w \alpha_{s}<0$.
(b) There is a disjoint union $\Phi=\Phi^{+} \sqcup \Phi^{-}$.
(c) If $s \in S$ then $s \alpha_{s}=-\alpha_{s}$ and $s \beta \in \Phi^{+}$for all $\alpha \neq \beta \in \Phi^{+}$.
(d) The length $\ell(w)$ of $w \in W$ is the number of root $\alpha \in \Phi^{+}$with $w \alpha \in \Phi^{-}$.

Theorem (Reflections). The following properties hold:
(a) If $w \alpha_{s}=w^{\prime} \alpha_{s^{\prime}}=\alpha \in \Phi$ for some $w, w^{\prime} \in W$ and $s, s^{\prime} \in S$, then $w s w^{-1}=w^{\prime} s^{\prime}\left(w^{\prime}\right)^{-1}$.

Denote this element by $s_{\alpha} \in W$, and let $T=\left\{s_{\alpha}: \alpha \in \Phi\right\}=\left\{w s w^{-1}: w \in W, s \in S\right\}$.
(b) The correspondence $\alpha \mapsto s_{\alpha}$ is a bijection $\Phi^{+} \rightarrow T$.
(c) If $\alpha, \beta \in \Phi$ and $\beta=w \alpha$ for some $w \in W$ then $w s_{\alpha} w^{-1}=s_{\beta}$.
(d) If $w \in W$ and $\alpha \in \Phi^{+}$then $\ell\left(w s_{\alpha}\right)>\ell(w)$ if and only if $w \alpha>0$.

Theorem (Strong exchange condition). Let $w=s_{1} \cdots s_{r}\left(s_{i} \in S\right)$ with $\ell(w) \leq r$. Suppose $t \in T$ is such that $\ell(w t)<\ell(w)$. Then there exists an index $i \in[r]$ such that $w t=s_{1} \cdots \widehat{s_{i}} \cdots s_{r}$. If $\ell(w)=r$, then the index i is unique.

2 Bruhat order

This will be the most useful partial order on W which is compatible with $\ell: W \rightarrow \mathbb{N}$.
Definition. The Bruhat order on W is partial order $<$ which is the transitive closure of the relation with $w<w t$ whenever $w \in W$ and $t \in T$ and $\ell(w t)<\ell(w)$.

This means that if $u, v \in W$ then $u<v$ if and only if there are reflections $t_{1}, t_{2}, \ldots, t_{k} \in T$ with $v=u t_{1} t_{2} \cdots t_{k}$ and $\ell(u)<\ell\left(u t_{1}\right)<\ell\left(u t_{1} t_{2}\right)<\cdots<\left(u t_{1} t_{2} \cdots t_{k}\right)=\ell(v)$.

Remark. Suppose $<_{2}$ is the transitive closure of relation on W with $w<_{2} t w$ for $w \in W$ and $t \in T$ and $\ell(w)<\ell(t w)$. Then $<=<_{2}$ since

$$
w<_{2} t w \quad \Leftrightarrow \quad w<w t^{\prime} \quad \text { for } t^{\prime}=w^{-1} t w \in T \text {. }
$$

Thus despite appearances the definition of the Bruhat order is symmetric between left and right.
The left/right weak order on W is the partial order defined in the same way but requiring $t \in S \subset T$. This order is sometimes useful, but we won't spend much time discussing it.

Note, if $w<w t$ for $w \in W$ and $t \in T$ then $\ell(w t)>\ell(w)$ but it is not required that $\ell(w t)=\ell(w)+1$. Also, observe that if $s \in S$ then $w<w s$ if and only if $\ell(w)<\ell(w s)$.

Example. If $|S|=2$ so that W is a dihedral group and $u, v \in W$, then $u \leq v$ if and only if $\ell(u) \leq \ell(v)$. (Try to work this our for yourself!)

Example. Let $W=S_{n}$ and $S=\{(i, i+1): i=1,2, \ldots, n-1\}$ so that $T=\{(i, j): 1 \leq i<j \leq n\}$. We have $\ell(w(i, j))>\ell(w)$ if and only if $w(i)>w(j)$ for $i<j$. Therefore $u<v$ in the Bruhat order of S_{n} if and only if the sequence

$$
v(1) v(2) \cdots v(n)
$$

can be obtained from

$$
u(1) u(2) \cdots u(n)
$$

by a sequence of moves in which we switch numbers in positions i and j (with $i<j$) with the i th number greater than the j th number.

For example, $\mathbf{2 4 1 5 3} \rightarrow 4 \mathbf{2 1 5 3} \rightarrow \mathbf{4 5 1 2 3} \rightarrow 54123$ so $24153<54123$.
This doesn't suggest a very efficient algorithm for checking whether $u<v$ for $u, v \in S_{n}$. The following result of Deodhar, which we quote without proof, provides such an algorithm.

Proposition (Deodhar). If $\left(a_{1}, \ldots, a_{k}\right)$ is a sequence of integers, then write $\left[a_{1}, \ldots, a_{k}\right]$ for the sequence rewritten in increasing order. Define $\left(a_{1}, \ldots, a_{k}\right) \preceq\left(b_{1}, \ldots, b_{k}\right)$ if $a_{i} \leq b_{i}$ for all i.
Then $u \leq v$ in S_{n} if and only if $[u(1), \ldots, u(k)] \preceq[v(1), \ldots, v(k)]$ for $1 \leq k \leq n$.
Let (W, S) be an arbitrary Coxeter system.
Proposition. Let $u \leq v$ and $s \in S$. Then $u s \leq v$ or $u s \leq v s$ (or both).
This turns out to be a key technical property, which is sometimes called the lifting property.
Proof. If suffices to assume that $v=u t$ with $t \in T$ and $\ell(v)>\ell(u)$. If $s=t$ then there is nothing to prove since then $v=u s$. Assume $s \neq t$. There are two cases to consider:
(a) If $\ell(u s)=\ell(u)-1$ then $u s<u<v$ so $u s \leq v$.
(b) Suppose $\ell(u s)=\ell(u)+1$. Then $u s t^{\prime}=v s$ for $t^{\prime}=s t s$, so it suffices to show that $\ell(u s)<\ell(v s)$, which will imply that $u s \leq v s$.

We argue by contradiction, so suppose $\ell(v s)<\ell(u s)$. We now apply the strong exchange condition as follows. Note that for any reduced expression $u=s_{1} \cdots s_{r}$ the expression $u s=s_{1} \cdots s_{r} s$ is also reduced as $\ell(u s)>\ell(u)$.

Then $v s=u s t^{\prime}$ has a reduce expression given by omitting one factor from

$$
s_{1} \cdot s_{r} s
$$

The omitted factor cannot be s since $s \neq t$ and $v=u t$, so we must have $v s=s_{1} \cdots \widehat{s_{i}} \cdots s_{r} s$ for some i so $v=s_{1} \cdots \widehat{s_{i}} \cdots s_{r}$ contradicting our assumption that $\ell(v)>\ell(u)$.
This completes the proof of the proposition.
A subexpression of a reduced expression $w=s_{1} \cdots s_{r}\left(s_{i} \in S\right)$ is any product of the form $s_{i_{1}} s_{i_{2}} \cdots s_{i_{q}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq r$.

Theorem. Let $w=s_{1} \cdots s_{r}$ be a fixed but arbitrary reduced expression for $w \in W$. Then $v \leq w$ in Bruhat order if and only if v can be obtained as a subexpression of the chosen reduced expression for w.

Proof. If $w=v t$ for some $t \in T$, so that $\ell(v)<\ell(w)$, then $\ell(w t)<\ell(w)$ so by the strong exchange condition $v=s_{1} \cdots \widehat{s}_{i} \cdots s_{r}$ for some i. Since the strong exchange condition does not require reduced expressions, iterating the previous observation implies that if $v<w$ then v is a subexpression of $s_{1} \cdots s_{r}$.

For the other direction, suppose $v=s_{i_{1}} \cdots v_{i_{q}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq r$. We need to show that $v \leq w$. For this, proceed by induction on $r=\ell(w)$. If $r=0$ then $v=w=1$ so $v \leq w$.

Assume $r>0$ and $i_{q}<r$. Then, by the inductive hypothesis applied to $s_{1} \cdots s_{r-1}$, we get that

$$
s_{i_{1}} \cdots s_{i_{q}} \leq s_{1} \cdots s_{r-1}<s_{1} \cdots s_{r}=w
$$

If $r>0$ and $i_{q}=r$, we first deduce by induction that

$$
s_{i_{1}} \cdots s_{i_{q-1}} \leq s_{1} \cdots s_{r-1}
$$

and then use the lifting property with $s=s_{i_{q}}=s_{r}$ to conclude that

$$
s_{i_{1}} \cdots s_{i_{q-1}} s_{i_{q}} \leq s_{1} \cdots s_{r-1}<=w \quad \text { or } \quad s_{i_{1}} \cdots s_{i_{q-1}} s_{i_{q}} \leq s_{1} \cdots s_{r-1} s_{r}=w
$$

In either case we get $v \leq w$ as desired.
The characterization of the Bruhat order in the theorem is a much more instructive way of thinking about this order. However, it is awkward as an initial definition because of the apparent dependence on the choice of reduced expression: this makes showing that $<$ is transitive nontrivial.

As an application, we can answer one natural question about the Bruhat order of parabolic subgroups.
Corollary. If $J \subset S$ then the Bruhat order of $\left(W_{J}, J\right)$ agrees with the Bruhat order of (W, S) restricted to W_{J}.

Proof. If $w \in W_{J}$ then w has a reduced expression in W involving only factors in J, and by the theorem $v \leq w$ in the Bruhat order of W or W_{J} if and only if v occurs as a subexpression of this reduced expression.

Next time: a few more properties of the Bruhat order, and a description of a fundamental domain for W acting on V.

